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Abstract 

Restoration of linear optics is crucial especially for third 

generation synchrotron radiation sources to improve key 

beam parameters such as emittance, momentum 

acceptance and so on. We have thus been analyzing the 

error distribution along the ring by using model 

calibration method (MCM) since 1998. A part of results 

was already utilized to improve the beam performance. 

The model used in MCM was recently changed from 2 by 

2 to 4 by 4 formalism which can treat a complete 

transverse oscillation mode mixing. In this paper, we 

present obtained results with 4 by 4 formalism compared 

with those with 2 by 2 one. 

1 INTRODUCTION 

From the beginning of 1990, W. J. Corbett and his 

colleagues developed a new technique to estimate beam 

optics parameters via the ring model [1]. The orbit 

response is defined as a set of orbit differences measured 

by beam position monitors (BPM's) with changing 

strength of a certain dipole steering magnet (STM) by 

some amount. The different response can be obtained by 

using the different STM as a perturbator. The idea of this 

method is that the realistic ring model should be obtained 

by fitting key parameters so that the calculated responses 

agree well with the corresponding measured responses. By 

using the model all estimated parameters are consistent 

with each other. Here, we do not touch the detail of 

parameter fitting, which one can see in Ref. [2]. This 

technique was successfully applied to restore the optics 

distortion in Advanced Light Source (ALS) [3]. 
We started applying 2 by 2 MCM to SPring-8 storage 

ring from 1998 in order to estimate the distortion of 

betatron functions [4]. On the other hand, top-up 

operation of the storage ring has recently been planned to 

increase the time-averaged brilliance for several bunch 

filling. In this case, it is essential to prevent a horizontal 

oscillation from coupling with a vertical one, because in­

vacuum undulators limit vertical aperture to around 4 mm 

in half height. To optimize operational condition and 

control distributed linear error fields if necessary, we 

changed the model from 2 by 2 to 4 by 4 formalism where 

skew error fields and precise optics parameters for each 

transverse eigen mode can be estimated. 
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2 4 BY 4 RING MODEL 

The ring model used here is based on linearlized 

Hamiltonian with thin nonlinear kicks as nonlinear 

magnets and error fields. As a nonlinearity, we only take a 

sextupole magnet into account. The full transverse optics 

parameter calculation obeys the formalism in Ref. [5]. 

2.1 Energy Shift Treatment 

The ring model can not treat with coupling between the 

transverse orbit and pathlength change. We therefore 

consider this effect approximately. When j-th STM at the 

finite linear dispersion T/z,j is changed by Oz.j. the 

fractional energy shift MjiE is expressed by 

AE e ·.n · 
-1-""'~ z=x y 

E a.£ ' ' ' 
(1) 

where a and L are respectively the momentum 

compaction factor and the circumference. The suffices x 

and y stand for respectively the horizontal and vertical 

planes. By using Eq. (1), the model response calculated by 

the 4 by 4 formalism, Rm,i,j is modified as 

AE 
Rm,i,j ~ Rm,i,j + --1 T/z,i· 

E 
(2) 

The suffices i andj represents respectively i-th BPM andj­

th STM. 

2.2 Fitting Parameters 

The fitting parameters in the ring model are the following: 

• Horizontal and vertical BPM gain factors Gx,i and 

Gy,i and the BPM rotation error around the beam 

axis qi for 280 BPM's ( i = 1 - 280 ). 
• STM gain factors Gj and the STM rotation error 

around the beam axis Pj for maximum -2x260 

STM's ( j = 1 - max. 520 ). 
• 236 thin integrated normal quadrupole error fields 

and 132 thin integrated skew quadrupole error fields. 

The measured horizontal and vertical response Xmes i and 

Ymes,i are related to the model response Rm,i,j by ' 

.. _ [ Xm,i,j ]- [ COS qi 
Rm,I,J- -

y m,i,j -sin m 

sin ~i l [ Gx,iXmes,i l 
cos m . Gy,iYmes,i ' (
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where Xm,i,j and Ym,i,j are respectively the horizontal 
and vertical model response at i-th BPM. The kick angle 
of j-th STM Oz,j is also related to the kick angle set in the 
measurement through the gain factors Gj and the STM 
rotation error Pj. 

Five normal and three skew quadrupole error fields are 
distributed in one Chasman Green (CG) cell and six 
normal and four skew quadrupole error fields are in a 
matching section for long straight of about 30 meter 
(LSS). The number of errors and their positions were 
optimized from the viewpoint of fitting convergence [4]. 
The model error field arrangement is shown in Fig. 1. 

CGCell 

LSS ,., .. , , .. ,., 
-~Bending I :Quadrupole I :Sextupole 

~ :Normal 4 :Skew 

Figure 1: Arrangement of normal and skew error fields. 

3 BEAM RESPONSE ANALYSIS 

3.1 Beam Response Measurement 

At the original operation point, cross talk between the 
horizontal and vertical beam responses is quite small. To 
enhance the cross talk, we set the operation point near by 
the linear differential coupling resonance line Vx - Vy =22. 
The distance from the resonance is 0.02 -0.03. 

The step of strength change for each horizontal STM is 
set to 0.035 mrad and that for vertical STM is 0.05 mrad. 
To suppress a hysteresis effect, the direction of strength 
change is determined as to increase the absolute value of 
initial setting strength. 

3.2 Fitting Convergence 

The linearlized sensitivities of each fitting parameter 
described in subsection 2.2 against beam responses are 
calculated with the ring model. By using the calculated 
sensitivity matrix, the fitting parameters are determined as 
to minimize the square of differences between the model 
and the measured responses by the least square method. 
Here, to solve this linear problem we used the algorithm 
of singular value decomposition (SVD). Since the ring 
model is not purely linear, the problem is iteratively 
solved changing the initial values of the parameters. Three 
iteration steps are sufficient for the good convergence. 

In the SVD algorithm, the convergence also depends on 
the cut-off level of the eigen values. Figure 2 shows the 

convergence versus cut-off level. The open squares and 
circles stand for respectively the s.t.d. of two normal 
quadrupole error distributions CJn and that of two skew 
ones CJs. Two distributions are obtained by a different sets 
of beam responses. The crosses stand for the r.m.s. of 
differences between the model and measured beam 
responses X· The cut-off level Vmin represents the ratio 
against the maximum eigen value. In Fig. 2 we see that 
the objective X decreases as Vmin decreases, but that the 
s.t.d. of the error distributions increases in the region 
where Vmin becomes smaller than 0.001. This shows that 
the convergence improvement does not contribute to the 
accuracy improvement of the error fields in the small cut­
off region. Accordingly we set Vmin to 0.001 in this 
calculation. 

Cut-off Level ofEigen Value V . 
mm 

Figure 2: Fitting convergence v.s. cut-off level. 

3.3 Error Field Distribution 

Figure 3 shows a quarter of the estimated normal 
quadrupole error distributions. In the figure, the 
distribution calculated by 2 by 2 MCM is shown together. 
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Figure 3: Integrated quadrupole error distributions. 
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As seen in Fig. 3 the estimated error distributions do not 
depend on the model used in MCM. 

Figure 4 shows a quarter of the estimated skew 
quadrupole error distributions. In the figure, three 
distributions obtained by the different sets of beam 
responses are also shown. The slow harmonics of the 
distribution are well reproduced in every measurement. We 
see the magnitude of high harmonic components is less 
compared with that of the quadrupole error distribution. 
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Figure 4: Integrated skew quadrupole error distributions. 

3.4 Betatron Functions 

Figure 5 shows estimated betatron functions for a quadrant 
of the ring. The betatron functions were calculated under 
the usual operation point (Vx=40.15, Vy=18.36), 
assuming the small shift of a operation point does not 
affect the error distribution seriously. In the figure, three 
kinds of distributions are shown together with the ideal 
distribution. One is estimated with the 2 by 2 formalism 
and others with the 4 by 4 one. In the 4 by 4 analysis, 
two different measurement data-sets were used. We see 
three kinds of distributions have a good agreement. The 
r.m.s. horizontal and vertical deviations are respectively 
-8 % and - 6.5 %. 

The agreement between the results obtained with 2 by 2 
and 4 by 4 formalisms shows the skew error fields are 
relatively weak. This means 2 by 2 formalism, where the 
off-diagonal parts of the one turn map are ignored, is good 
approximation for the SPring-8 storage ring. 

3.5 Coupling Resonance Excitation 

By using the estimated skew quadrupole fields, we can 
predict the excitation of linear coupling resonance lines 

around the operation point. The calculated excitation 
strength of the nearest resonance line, Vx - Vy =22 agrees 
well with the value measured by the minimum tune 
separation. As seen in Fig. 6, we find one differential and 
two sum coupling resonance lines near by the operation 
point should be suppressed to achieve the small vertical 
emittance corresponding to the H-V coupling ratio of 0.1 
%. 
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Figure 5: Distribution of betatron functions. Upper and 
lower graphs stand for respectively horizontal and vertical 
betatron functions. 
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Figure 6: Excitation of linear coupling resonance near by 
the operation point. 
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