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Abstract 

A tracking and analysis code for baem dynamics has 
been developed in SPring-8. Exact Hamiltonian, not 
linearized, is used to derive equations of motion in the 
code. The equations of motion include radiation losses, if 
specified These equations of motion are solved by 
symplectic integration method for basic devices such as 
drift space, bending, quadrupole and sextupole magnets, 
though filed errors and steering magnets are treated as 
kicks and RF cavities are also treated as thin elements. 
The code has been extended from four dimensions to six 
dimensions and effective analytical tools have been 
developed in this code system. 

1 INTRODUCTION 
Nowadays, one pursues ultimate performance of an 

accelerator, for example, high current of ampere order and 
sub-nmrad beam emittance. It is natural that one should 
design or modify an accelerator carefully and also 
optimize or re-optimize its parameters precisely. To this 
end, one needs a computer code which can exactly 
simulate nonlinear particle motion including direct and 
indirect particle-particle interaction. 

We started to improve RACETRACK [1] which is a 
kick code on the basis of 4 by 4 linearized Hamiltonian 
in the beginning of SPring-8 project [2]. Many functions, 
i.e., a beam injection simulator, a closed orbit distortion 
(COD) correction package, a 4 by 4 optics and emittance 
calculation routine and so on were ad:lxi step by step to 
meet our requirement. Toward the normal mode analysis 
on higher order nonlinear effects, well-known differential 
algebra algorithm [3] was introduced into the code to 
extract one turn map. 

The code was modified drastically in the period from 
1997 to 2000. We gave up the 4 by 4 linearized 
Hamiltonian, i.e., RACETRACK to precisely simulate 
beam dynamics in new optics with four magnet-free long 
straight sections [4,5]. Here, we aropted 6 by 6 exact 
Hamiltonian having full kinematics terms. This means 
that all components· of an accelerator become nonlinear 
and we can not use a simple transfer matrix for any 
element. By expanding the code from 4 by 4 to 6 by 6 
formalism, we can qualitatively estimate nonlinear 
particle motion with a large energy deviation and also 
particle motion under large chromaticity. 

In parallel, we developed various analytical 
formulation on nonlinear beam motion [6, 7,8] to analyze 
beam behavior in the real ring. Those were installed in 
our code as analytical tools. To make realistic 
simulation, it is also important to estimate real error 

distribution in the ring. From this point of view, a 
Model Calibration Method (MCM) package was 
developed [9, 10]. 

Recently, to estimate a momentum acceptance 
precisely and simulate top-up operation, we developed a 
synchrotron radiation handling package. This package has 
two options: the expected value option and the cpantum 
photon option. We are now developing both a normal 
mode analysis package and a 6 by 6 optics and emittance 
calculation routine. We are also trying to include a short 
range wake-field effect for more precise simulation of real 
beam behavior. 

2 CODE CONSTRUCTION 
The code construction is shown in Fig.l. The ring 

parameter handler determines the lattice structure from 
element and structure data read from files specified by the 
job control data Field error information is prepared by 
response analysis and taken into the code, if necessary 
[9, 1 0]. Alignment errors can be included in the element 
data. 

# Dispersion Corre:ticn 
# •••••••• 

# Dynamic Apperture 
# Inje:ticn Efficien::y & I3ean Inje:ticn Sinulatim 
# Anplitude depende:lt 'lime Shift 
# ...•.. 

# N:ru:!near On:ara.ticity ~ to 3n:l anler 
# N:ru:!near Dispesian up to 5th anler 
# N:ru:!near Local Chraraticity 

Figure 1: Code construction. A single asterisk indicates 
that the packages are in 4 by 4 formalism, and double 
asterisks indicate that the package is now under 
construction. 

The closed orbit finder in 6 dimensional form 
determines the closed orbit with some correction utilities 
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such as COD correction, chromaticity correction and so 
on, if necessary. When the lattice includes no cavities and 
the radiation option is not activated, this closed orbit 
finder uses 4 dimensional form. In 6 dimensional closed 
orbit search, RF frequency or momentum deviation 8p/p 
is searched dependending on the selected option. During 
closed orbit search, the code uses expected values of 
radiation energies. Then one-tum map in 6 dimensional 
form is determined. 

After one tum map extraction, two functions are 
available in the code. One is the tracking and the other is 
the eigen mode analysis [6, 7, 8]. Normal form analysis 
package will be actl::d in the code construction near future. 
Though the tracking package is in full 6 dimensional 
form, eigen mode analysis packages are not in 6 
dimensional form yet. 

In tracking package, the code has two radiation 
options, if radiation option is activated One is the 
expected value option and the other is the quantum 
photon option. The expected value option uses expected 
value of radiation energy, while quantum photon option 
uses quantum photon energy determined by random 
number and energy spectrum of photons. 

3 EQUATION OF MOTION 

3.1 Hamiltonian 

The Hamiltonian used in the code is given by 

H = Po - h[ { (1 +8)2 - (Px - qAx IP0)2 

where 

- (Py - qAy IP0)2 }112 - qAs IP0 ], (1) 

8 = (p - Po)/Po, 

h = 1 + Kxx + Kyy, 

Pcr = (E - Eo)/povo 

(2) 

(3) 
(4) 

and subscript 0 means the value corresponding to design 
ones, Kx and Ky are the curvature of the x- and y
direction, respectively. The Hamiltonian and canonical 
momenta Px and Py in eq.(1) are normalized by the 
product of design momentum and light velocity, PoC. 
This Hamiltonian is basically the same as Ref. [6], but 
modified to include synchrotron motion term Po· 

The equations of motion are as follows: 

x' = a HI a Px, Px' =-a HI ax+ rx, (5) 

y' = a HI a Py, Py' =-a HI a y + ry, (6) 

cr' = a HI a p0 , p0 ' =-a HI a cr + r0 , (7) 

cr = s - v0t. (8) 

The symbol cr is the deviation of the longitudinal 
position from the bunch center. Radiation loss is 
considered as rx, ry and r0 in eqs.(5) to (7). It is assumed 
that photons are emitted toward the direction of 
propagation. We have 

Ax= Ay = 0 (9) 

for all the elements except insertion devices. Then the 
Hamiltonian becomes 

H=po 

- ( 1 + Kxx + Kyy )[{(1+8)2 _ Px2 _ Py2 }1/2 

- ( 1 + Kxx + Kyy) 2/2 + go(x2 _ y2)f2 

+A.0(x3 - 3xy2)f6 

- (L/2nk)(q/p0c)V{ cos(2nkcr/L +A <1> ) 

+crsin<j>0 } ]. (10) 

The last term of eq. (10) is for the cavity, and <l>o = 0, if 
radiation option is activated The symbol k is the 
harmonic number and L is the circumference of the ring. 
Here, multi-poles higher than sextupole are neglected, 
though they can be treated as kicks in the code. The 
equations of motion are derived from eqs. (5) to (7) and 
(1 0). The vector potentials used for the insertion device 
are basically the same as Ref. [11]. 

3. 2 Symplectic Integrators 

For Hamiltonian systems of the form 
H = T(p) + V(q), (11) 

there exist explicit symplectic algorithms [12]. As the 
Hamiltonians for the quadrupole and sextupole magnets 
are given by the form of eq. (11), symplectic integrators 
for the quachupole and sextupole magnets can be explicit 
integrators. We have adopted the fourth order integrator 
given as follows: 

Cfi = Cfi-1 + -r q( a Tl a P)p=p,_1, (12) 

Pi =Pi-1- 't dj(aV/aq)q=q,, (13) 

for i=1 to 4, where 't is the integration step width. 

q = C4 = 1 I [2(2- 2113)], 

C2 = C3 = (1 - 21/3) I [2(2- 2113)], 

d1 = ~ = 1 I (2 - 2113), 

d], = - 2113 I (2- 2113), d:t = 0. (14) 

Symplectic integrator for the cb:ift space is the same as 
the transfer matrix except cr calculation, and the 
integration step width is taken as the length of the cb:ift 
space, i.e. one step integration. 

The Hamiltonian for the bending magnet is not given 
in the form of eq. (11), so the symplectic integrator for 
the bending magnet should be implicit, if generating 
function cannot be found We have adopted the simplest 
first order implicit integrator given by 

z' = z + 't f((z + z')/2) (15) 
which is known as the implicit midpoint rule. 

The explicit first order symplectic integrator for 
insertion devices can be derived by means of generating 
function [11]. 

Field errors, steering magnets and RF cavities are still 
treated as kicks. Thin lenses treated as kicks are 
essentially symplectic. 

4 EXAMPLES 

Some examples of the simulation are shown in this 
section. First, Fig.2 shows the experimental data and the 
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results of horizontal chromaticity calculation. We find 
the thin lens approximation of sextupoles is not valid in 
the region where the absolute value of momentum 
d!viation Op/p is large. This shows that the thick magnet 
treatment of sextupole is essential in nonlinear chromatic 
behavior. 

In Fig.2, the result of the 3rd ord!r nonlinear 
chromaticity calculation is also shown. In the range data 
exist, results of exact 3rd ord!r calculation and tracking 
with thick sextupoles agree with experimental data. 

Secondly, tune shift was computed for BL19XU (25m 
undulator) which. was installed in the long straight 
section of SPring-8 last year. Figure 3 shows the relation 
of tune shift and gap width calculated by the cod!. The 
agreement of the calculation with data is fairly well. 

As an example of 6-dimensional calculation, Fig.4 
shows ds(d!viation from bunch center)-E(particle energy) 
phase diagrams for injection mod! simulation. In Fig.4, 
initial O"dg, standard d!viation of the bunch length, is 
ooubled to enhance the shape d!velopment of the phase 
diagrams. 

43.6 
Horizontal Chromaticity (HHLV Optics) 

• Experiment 
-Tracking (Thin Sext.+Linear H ) 

43.5 -Numerical Calc. by DA (Thick Sext. +Nonlinear H 
-·-.. Exact 3rd Equation 

43.4 
§ 

E-< 
0! 43.3 = 0 

·£! 
0 
:t: 

43.2 

43.1 

43~~~~~~~~~~~~~~~~~~ 

·0.04 -0.03 -0.02 -0.01 0 0,01 0.02 0.03 

liplp 

Figure 2: Typical horizontal chromaticity as a function 
of op/p. 
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Figure 3: Tune shift by insertion <£vise. The open circles 
and solid circles are horizontal tune shift and vertical tune 
shift, respectively. 

5 SUMMARY 
We have d!veloped a tracking and analysis cod! which 

uses equations of motion d!rived from exact Hamiltonian. 
The equations of motion are solved by symplectic 

integrators. Nonlinear effects such as dispersion and 
chromaticity can be explained by the cod!. The core 
d!veloped simulates the nonlinear beam motion well in 
SPring-8 storage ring. 
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Figure . 4: An example of ds-E phase diagram. From 
upper left to lower right, 101-th, 201-th to 1000-th turn 
after beam injection at each 200 tum step. Four hundreds 
macro-particles are injected. 
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