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Abstract 

Emittance growth and halo formation for a mismatched 
beam of a lD Gaussian distribution in a uniform focusing 
channel are examined by means of macro-particle 
simulation. The results are analyzed by the isolated 
nonlinear resonance theory. The second-harmonic 
resonance driven by beam core oscillation is numerically 
and analytically shown to take. a key role in forming halo. 
Analytic estimation of the halo-location is explored and the 
halo-location is proved to correspond to the outer edge of 
the resonance islands. Nonlinear fields in an actual particle 
distribution are shown to significantly affect on the halo's 
location and size. 

1 Introduction 

One of major issues in high power accelerators is 
activation of accelerator components due to beam loss. 
Beam loss has to be reduced to the order to allow hands-on­
maintenance. In order to produce an acceptable design, it is 
important to understand the mechanisms of emittance 
growth and halo formation resulting in beam loss. 

Most of recent attention has been focused on driver 
linacs. Totally self-consistent particle in cell simulation 
(PIC) codes have been developed, which have demonstrated 
a wide variety of aspects in halo formation for realistic 
beam distributions [1]. Meanwhile, the analysis and 
understanding of space charge effects for particle beams in 
linacs has been greatly facilitated by use of particle core 
models (PCM). Resonant (parametric) interaction between 
the breathing core and the individual particle oscillating 
about and through the beam core as the driving mechanism 
of halo formation has been explored on this model by many 
research groups [2,3]. Certainly, PCMs are useful for 
qualitative understanding of the halo formation mechanism 
and the explored mechanisms are suggestive for a more 
realistic distribution. However, there is no confidence to be 
capable of quantitatively estimating the size of halo and its 
parameter dependence. 

In the contrast to the case in linacs, understanding of the 
halo formation mechanisms in circular rings seems to be 
quite difficult even by the PIC codes for a realistic 
distribution, because repeated betatron oscillations through 
a huge number of lattice elements takes a key role in the 
resonant interaction and the numerical calculation over a 
sufficient number of turns should take unrealistic CPU 
times and memory. We have a strategy to develop a useful 
analytic model capable of predicting position of halo in a 
real space as a function of beam and machine parameters, 
for a realistic beam distribution. As the first step of this 
strategy, halo formation in a ID Gaussian distribution in a 

uniform focussing channel has been numerically examined 
and a second-harmonic nonlinear resonance excited by the 
rms beam core oscillation has been identified to be a driving 
mechanism of halo formation. This view has been 
confirmed by an analytic approach based on the isolated 
nonlinear resonance theory. The simulation and theory 
have shown that highly nonlinear components in the real 
distribution strongly affect on the halo location. The current 
analytic approach is believed to be a germinal model in the 
future theory dealing with a 2D realistic distribution in the 
FODO lattice. 

2 Multi-particle Simulation 

First of all, a 1-D simulation method is described which 
has been used to understand detail and dynamic process in 
involved physical phenomena. Through the simulation, a 
beam distribution is assumed to be of infinite and uniform 
in the horizontal and longitudinal planes and finite and non­
uniform in the vertical plane. In addition, the beam 
propagates through free space. Space-charge fields affect 
on the betatron motion of beams in vertical direction. 

The vertical electric field originated from beam space­
charge in the rest frame is written in the form of 
EY (y) = e[f:, n(y')dy'- J; n(y')dy'] I e0 , where n(y) is a 

particle density function in the rest frame. In general, 
EY (y) is nonlinear with respect to y. Perturbing effects of 
nonlinear fields are included as delta-function like kicks 

(1) 

where M is the transfer matrix of linear focusing system, 
m is rest mass of particle, y is a relativistic mass factor, v 
is the velocity of the design particle and L1s is the 
longitudinal step. Numerical integration of n(y) with linear 
interpolation gives EY, which is assumed to be constant 
through L1s, at the exit of step. 

We plan to apply the current study for the 12GeV proton 
synchrotron (KEK-PS). Most of calculating parameters are 
very similar to that of the KEK-PS where C = 340m is the 
circumference, vY = 6.23 is the bare tune and the injection 
energy is 500MeV. In order to manifest a key roll of space 
charge effects in halo formation, an extremely high current 
has been studied here. In simulations, 105 macro particles 
have been tracked over more than 100 turns. For choosing 
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Fig. 1 RMS emittance growth of the mismatched beams 

Lis, saturation in the simulation results has been monitored 
as a function of Lis and Lis = 5 em has been applied. 

For justification in the simulation scheme, an exact 
equilibrium Gaussian distribution analytically derived by 
Vlasov's equation and, for comparison, an other exact 
equilibrium Gaussian distribution function without space­
charge effects were put into calculation as an initial 
condition of the simulation. The former RMS emittance 
does not change much with growth less than 0.3% and the 
later quickly grows to saturate with a big growth of about 
4%. Thus the simulation scheme has been conformed to 
give a reasonable results. 

3 Steady states for mismatched Gaussian, waterbag and 
square cosine distribution 

Now we call a beam, which has the exact equilibrium 
distribution function with space-charge effects, as "a 
matched beam" and other beams as "mismatched beams". 
The simulations were carried out for three cases of 
mismatched beams with Gaussian, waterbag and square 
cosine distribution. The square cosine distribution is 

defined as f(y,y') = fo cos2(n~l + y'2 12R(y,y')). where 

R(y,y') is the distance from the origin to the outer edge 

through (y, y}. It is noted that its profile is continuous at 
the beam boundary as that of a Gaussian distribution and the 
beam edge is finite as that of a waterbag distribution. All 
initial distribution functions have the same total current and 
the same RMS emittance as the matched beam. 

RMS emittance growth of the mismatched beams is 
shown in Fig. 1. Gaussian and square cosine distributions 
quickly arrive at steady states after less than a few tens of 
turns (:::;; 3 for Gaussian and :::;; 30 for square cosine). 
Meanwhile, the RMS emittance of the waterbag beam still 
grows over 1200 turns. The beam density with the square 
cosine distribution at first approaches to the Gaussian 
distribution at the steady state. On the other hand, the beam 
with the waterbag distribution tends to become flat because 
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Fig. 2 The phase space projection at lOOth tum 

of redistributing towards the beam edge. 
The phase space projection of the beam with the square 

cosine distribution after lOOth tum suggests that particles 
escaping from the core are responsible for the growth of 
RMS emittance. In addition, it is remarkable that there are 
two vacant regions as seen in Fig. 2. This particle 
redistribution seems to originate from nonlinear resonances. 
Test particles of 10 were put in one vacant region with some 
amplitude and trucked after another 100 turns. All 
oscillation frequency spectra of the test particles obtained 
by FFT indicate the sharp peaks at Vp = 5.23, where Vp is 

the net betatron tune depressed by space-charge forces. 
Since the oscillation frequency should depend on the 
amplitude because of the nonlinear space-charge fields, this 
means the motions of test particles are dominated by 
nonlinear resonance. 

Since there are no external nonlinear fields in the 
uniform focusing channel, the sources driving nonlinear 
resonances are identified to be the self space-charge fields. 
The simulation results also show the notable oscillation of 
the RMS beam size, which is simply induced by 
mismatching. Parametric resonance between a single 
particle motion and the beam core oscillation can be exited 
when the depressed betatron tune v fJ and the tune of core 

oscillation v c satisfy v fJ I v c = i I j, where i and j are 

integer. The lowest dominating resonance is obviously a 
second-harmonic resonance, which is capable of creating 
two resonance islands. Certainly, the FFT of the core 
oscillation exhibits a single sharp peak at v c = 10.45. The 
results strongly suggest the major source of the second­
harmonic resonance is the rms beam core oscillation. 

4 Nonlinear resonance excited by beam core breathing 

In order to confirm a speculation suggested by the 
simulation results that the rms beam core oscillation is 
capable of driving the second-harmonic resonance, we have 
developed an analytic approach using the isolated resonance 
Hamiltonian. Here, the beam distribution is assumed to be 
the Gaussian distribution with the rms beam size oscillating 

-46--



The 12th Symposium on Accelerator Science and Technology, Wako, Japan 1999 

at a single frequency, a{s)=a0 (1+8coscocs), where 0'0 is 

the averaged rms beam size, 8 is the maximum deviation 
from 0'0 and coc = 27n'c I C is the frequency of the beam 
core oscillation. Then the Gaussian distribution in the rest 

frame is given by n(y,s) = N0 exp(-l l2a(s)2 )!-.J2iia(s), 

where N0 is the total number of particles per unit length in 
the rest frame. The electric field of this is written in the 
form of the Taylor expansion, 

eN .. {-1r ln+l 
E (y s) = --0- E--'--~---=~.,.,.. 

y • eo..fiii n=on!{2n+1)2n a{s)2n+l. 
(2) 

Introducing the action-angle variables ( f/J, 1), the single 

particle Hamiltonian is expressed as 

where A=2a0e2N0 Iy 2e0mv2..fiii. COp =27rVYIC is the 

bare betatron frequency and in a case of c5<<1 of our interest, 

Fn(t/J,s) = {1- {2n + 1)8coscocs}cos2n:z f/J. 
The rapidly oscillating terms except the slowly 

oscillation terms disappear after averaging Eq. (3) over 
many turns [4]. The later excites the second-harmonic 
resonance. The averaged Hamiltonian, called the isolated 
resonance Hamiltonian, H iso is written by 

( co ) .. 1[ 1 2n + 1 J Hiso = COp __ c 1 -AEa(n)r+ ----8cos2VI , 
2 n=O n+1 n+2 

where a(n) = -{2n)!l{{n!)3{n + 1)( -40'02COp r1
} and 

Vl=f/J-co.sl2. 

(4) 

The position and size of the resonance islands are well 
known to be a good measure to represent the relative 
strength of perturbing terms. The stable fixed point at 
VI = 1r I 2 and 3n I 2 radian and the unstable fixed point at 
VI = 0 and 1r radian are analytically evaluated by setting 
the canonical equations to be zero. Maximum and 
minimum values of the action variable along the trajectory 
through the unstable fixed point are defmed as 1 max and 
1 min , respectively. The size of the resonance island 
(resonance width) is written by 1 max - 1 min on the action 
axis. 

In order to obtain a necessary and sufficient limit nmax in 
the above summation, 1 max and J min have been calculated 
as functions of nmax. From the results, nmax must be more 
than 11. Lower nmax brings the wrong results. Here, 
nmax = 15 has been applied. 

Calculations of ]max and ]min are performed using Eq. 
(3), provided the values of a 0 , co0 and o at the steady-state 
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Fig. 3 J max and 1 min vs. L1v 

achieved after the transient process, which depend on the 
initial state. Five sets of the parameters are obtained, 
assuming the initial states with the same distribution 
arms but different beam density N0 • The 1 max and 1 min are 
calculated employing each set of above parameters. The 
calculated locations of resonance islands are in good 
agreement with the simulation results as shown in Fig. 3. 
We conclude that the second-harmonic resonance is driven 
by the beam core oscillation for the nearly Gaussian 
distribution. In addition, Fig. 3 clearly indicates that the 
outer edge of the resonance islands can be regarded as the 
location of halo. 

5 Conclusion 

Parametric interactions between a core oscillation and a 
highly nonlinear motion, of individual particle drive the 
second-harmonic resonance for a ID Gaussian distribution. 
This supports the speculation of Gluckstem for a realistic 
beam distribution. The second-harmonic resonance is a 
source of emittance growth and results in beam halo which 
is created as an outer edge of the resonance islands. The 
location of halo is analytically tractable using the canonical 
equations derived from the isolated resonance Hamiltonian. 
Nonlinearity in the particle motion is crucial to determine 
the location of halo; the second-harmonic terms down-fed 
from higher-order nonlinear terms are included in order to 
accurately estimate the halo location. The estimation of the 
halo-location would provide a reasonable choice of physical 
aperture or halo collimator in proposed high intensity proton 
accelerators. 

Applications of the developed analytic tool for a more 
realistic 2D distribution in a periodic focusing seem to be 
straightforward. 
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