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Abstract 

Microwave mode conversion from T£10 to TEno is 
considered based on geometrical perturbations of the walls 
of a rectangular waveguide. Equations under a transmission
line approximation are derived, and design simulations for 
planar-FEL application are presented. 

1 Introduction 

The excitation of a specific electro-magnetic mode in a 
waveguide is a standard topic in microwave engineering. In 
Gyrotrons and helical-wiggler FELs, circular waveguides are 
used. The design method on mode converter of a circular 
waveguide has been confirmed as described in ref. (I). 
Maxwell's equations are transformed into an infinite set of 
coupled transmission-line equations as follows: 

dV 1 ( da) - 2k k 
_n = -jW).Il +- _ L n m V 
dz n a dz m~l k~ - k: m 

din= _1. [3; V +_!_(da)~ 2knkm I (l) 
d n d £... k2 k2 m . 

Z Wfl a Z m=l m - n 

The designs can be performed numerically. Actually, the 
circular mode converter has already been used to heat 
magnetically confined plasmas at the electron cyclotron 
resonance frequency as described in ref.(2). 

However, we can not find that of a rectangular 
waveguide which is used in a planar-wiggler FEL. In order 
to extend the application field of the microwave-FEL, a 
design study of a rectangular mode converter would be 
significant. 

2 Rectangular waveguide mode converters 

As a mode-excitation structure, the two-type geometry, 
which is shown in Fig.(l), is considered. One is a periodical 
taper-waveguide type, and the other is a periodical bend
waveguide type. The walls are assumed to be perfectly 
conducting and to have a sinusoidal variation in the x
direction. 

2-1 Periodical Taper Waveguide Type 

Mode Coupling Equations 

In order to obtain mode-coupling equations, we adopt an 
approach which is similar to that present in reference 3, and 
confine our attention to TEno for the sake of simplicity. 

By considering the geometrical structure of the 
waveguide, it is advantageous to separate the axial 
coordinate (z) from the transverse coordinates (x,y). The 
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Fig.l Two types of rectangular waveguide mode converters. 
The left side is of the periodical taper type, and the 
right side is of the periodical bend type. 

component of a field in a rectangular waveguide can be 
represented as a superposition of mode function, 

Ey = L Vn(z)En(x,y) , Hx = Lln(z)Hn(x,y), 
n n 

H, = Lin(z)hn(x,y) 
(2) 

In rectangular coordinates, the mode functions are given as 

E = H = /2 sin(k x) h = /2 cos(k x) 
n n ~-:;;; n n ~ -:;;;_ n ( 3) 

' 
where kn = mr 1 a is the wave number; a and b are width 
and height of the rectangular waveguide. Subscript "n" 
means the T£.0 mode. These are orthogonal functions. 

In the T£.0 mode, Maxwell equations become 

{)£ 
_Y = - jmflH 

()z X 

()£ 
-' = jmflH ax . 
aH. . aH, 
-=-jOJEE +-

()z , ax 
A relationship is found by substituting the 
Eq.(4-b), and comparing the coefficients, 

jWfl 
V (z) = -i (z) 

II kfl II 

(4-a) 

(4-b) 

(4-c) 
series (2) into 

(5) 
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Inserting Eqs.(2) into Eq.(4-a) and Eq.(4-c), we should 
notice that the width ( a) of a rectangular waveguide is a 
function of z when we differentiate mode functions with 
respect to z . Also kn is dependent on z , and vn is a 
function of z . 

Multiplying both sides by ..J 2 I ab sink. x and integrating 
over the guide cross section, while making use of the 
orthogonal characteristics of the mode function, we obtain 
the following coupling equations in the form of ordinary 
differential-equation: 

dV 1 da f!b 1 da 2k k 
-· = -JruJll +--v + ---I-'"-·-v 
dz • 2a dz • a a dz m e -e '" 

m • ' 

di. = _ j {3: V + _1 da I + {2b ..!_ da L 2k,..k. I 
dz CtJf.L • 2a dz • ~-;adz ,. k~ -k: "'· 

(6) 
where f3n is the propagation constant for the TEno mode and 
the summations are extended under the condition that the 
integer n-m is an even integer, except for n = m. The mode 
convertion between the n mode and the m mode occurs 
under the condition that the integer n-m is an even integer. 

Forward wave equation 

The mode voltage ( vn) and the current (In) are related to 
the wave amplitude ( An and Bn ), which correspond to the 
forward and backward waves, 

Vn = .Jf(;(An + Bn) 
(A-B) 

I - • • .- F 
' (7) 

where Kn is the wave impedance of then-mode. In order to 
obtain an equation on the forward wave, both equations are 
summed to eliminate the backward wave . 

We design the mode converter between the T£10 and the 
T£30 • If the sinusoidal perturbation of the waveguide wall 

is defined in term of the wave number ( kw ), we can expect 

that the largest growth of the mode conversion would occur 

with kw = ~ - JS ; ~ and JS are the average of "-t arrl 

~ , respectively . The interaction must be characterized by 

the "beating" of the three waves. 

Assuming that the waveguide has a slow taper, or 
- jfJm » (l/2a)da 1 dz, and assuming that the reflected modes 
( Bn) are negligible, we obtain 

dA1 · •13 f!b ( 1 da) 2k1k3 [Jf1 4f3 ] -=-jA+--- -+-A 
1 1 2 2 • "3 

dz · a a dz k3 - k1 K3 K1 

' 

dA3 • f!b ( 1 da) 2k1k3 [Jf1 4f3·] -=-jf3A + - -- --- -+ -A 33 2 2 "1 
dz a a dz k3 - k1 K3 K1 

' (8) 

where 
CtJf.L CtJf.L CtJf.L 

K (z)=--= =-r======::=-

n f3n(z) ~k2 -k;(z) (ru)2 ( n1r )2 

c a(z) 

Design simulation 

The results concerning mode conversion were obtained 
by numerically integrating the above 1st-order equations. 
The simulation parameters are as follows: the frequency is 
35GHz, the waveguide size is WRJ-10 (a= 22.9i:nm, b = 
10.2mm), and the wall period is 5.54 em. Letting the 
excitation at z=O be, A1 (0) = 1, A3 (0) = o, the simulation 
results on the width modulation of 5% show that complete 
energy transfer from the T£10 mode to the T£30 mode is 
accomplished at z = 82 em. 

2-2 Periodical Bend Waveguide Type 

Mode Coupling Equations 

In the curvilinear coordinate system as shown in 
the element of length is, 

di = dx2 + d/ + e:dw2 

Maxwell equations are 

2_ (!.__ E ) = - jruJ.I}I 
::t.. ~ % e3 aw 

a 
- E = j"CtJIIl.l ax J 'f-UI.w ' 

2_[!_H _!_eH]=-}OJEE 
e3 aw • ax 3 w ~ 

X 
where e3 = 1 + - . 

p 
We assume the following fields as shown in ref.(4): 

E ="'if sink x · V (w) y ~ m m 
m ab 

H.= L (2sink,.x·I,.(w) 
m ~-;;;; ' 

e3H, = L f2 cosk,.x·U,.(w) 
..~-: . 

Fig.l, 

(9-a) 

(9-b) 

(9-c) 

(10) 

Inserting Eqs.(lO) into Eq.(9-a), multiplying by 

.J2I;b ·sin k,x and integrating over the cross section (x-y 
plane), we can easily obtain an equation, 

dV "'\:' 2 If X -· =-jruJll.- .4 .. )CtJJ.L- -sink.xsink,.xdS·I,. · 
dw ,. ab P . (11) 

Substituting Eqs.(lO) into Eq.(9-c), and multiplying by 

.../2/ab ·sink,x and integrating over the cross section (x-y 
plane), we obtain 
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dl. . 
- = -JOJEV 
dw • 

- jwe"' 2.JJ _::sink x sink xdS · V - k U 
~ab p '" ,. m " ,. 

(12) 
In order to obtain un, we need some approximations, as 

below. If we substitute Eqs.(10) into Eq.(9-b), we obtain 

/2 2: k. cos k.x · V:. = jWJ.L /2 2: cos k.x · u. 
~~ . ~~ . ~ 

Multiplying by ..J 2 I ab cos k.x and integrating over the cross 

section (x-y plane), and assuming ...!.. = 1- ..::_ , we obtain 
e3 p 

k,. V .. = jWJ.L 2: ( 2b fJ cos k .. x cos k,xdS 
• a 

_2.JJ~cosk xcosk xdS) · U 
ab p '" • • 

=jwJ.Ll:(o .... -; .. .J.u. 
This equation can be written in matrix form, and we 

obtain an approximate inverse matrix as follows: 

u1 1 + ;1.1 ;2.1 ; ... 1 k1 v; 
;1,2 ;,.,2 

o .... + ; .... u. kV .. .. 
We substitute this un into Eq.(12), and obtain an equation; 

di ·e • . v ) • v -=-jOJE +-
dw • WJ.L • 

- jwe"' 2.JJ ~sink x sink xdS · V 
~ab p • .. .. 

jk "" 2 JJ X +-" k.Jk - -cosk xcosk xdS · V 
WJ.L,. '"ab p • .. '" (13) 

We should notice that mode conversion occurs under the 
condition that the integer n+m is an odd number. 

Forward wave equation 

Using the relation of Eqs.(7), we convert the mode 
voltage and the mode current in eq.(l1) and eq.(13) into the 
forward-wave and backward-wave amplitude. we consider 
only the case of coupling between T£10 and T£20 . The 

mode-coupling equations, neglecting reflected modes, can be 
written in the following form 

~ = -j[,BA +C1
2AJ 

dw , 

dA 
_2 ~-j(.Bz~+c~~] 
dw , (14) 
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Fig.2 Simulation result in a periodical bend type converter. 

where 

1 2 a[( e r;;a)8 k1k2 10] 
c2 = c1 = - p -J ,81,82 + ",81,82 9n2 - -J {31{32 9n2 

and k = w I c, k1 = TrIa, k2 = 2Tr I a, 

f3t = ~k2 -k12 '/32 = ~k2 -k:. 

In numerical simulations, we introduce a z-axis which is 
normal to the x-y plane. The variable w is converted to z. 
The simulation parameter is as follows: the frequency is 
35GHz, waveguide size is WRJ-10, the wall period is 15.59 
em, and the modulation of the wall is 5%. 

Fig.2 shows the amplitude evolution of the T£20 versus 

the z-position. Complete mode conversion results at z = 60 
em. After that, the inverse conversion occurs. 

3 Conclusion 

We obtained coupled-mode differential equations in the 
rectangular waveguides and designed two mode converters of 
35 GHz. 

In the next step simulation, we must take account of 
spurious higher modes and TM mode. Further we must 
mention that this perturbation scheme is no longer valid for 
a large wall variation. 

The actual output mode from planar-FELs is T£01 mode. 
The conversion from T£01 to T£10 is possible. We 1m 
already experience using a taper-waveguide. 
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