Development of Measurement and Control System for Polarized ³He Ion Source Based on Electron Pumping

Yasushi ARIMOTO, Katsuya YONEHARA*, Takeshi TAKEUCHI*, Masayoshi TANAKA** and Tamio YAMAGATA* Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567, JAPAN *Department of Physics, Konan University, Higashinada, Kobe 658, JAPAN **Kobe Tokiwa Jr. College, Nagata, Kobe 653, JAPAN

Abstract

A polarized ³He ion source based on electron pumping has been developed at RCNP, Osaka University. The measurement system mainly consists of two parts. One is a part where a polarization of a Rb atom is measured based on the Faraday rotation effects. Another one is a part where a nuclear polarization of a ³He particle is measured by the beam-foil spectroscopy. To reduce the statistical errors in these measurements, a helicity of a pumping laser is changed by controlling a pockels cell. These measurements and a controlling are operated by the SUN workstation.

1 Introduction

A new polarized ³He ion source based on electron pumping[1] is being developed at the Research Center for Nuclear Physics, Osaka University[2]. It is necessary to measure a Rb atomic-polarization and a ³He nuclear-polarization to investigate a performance of the ion source. The Rb atomic polarization is measured by using of the Faraday rotation effects which causes a rotation of the plane of a polarization of the light penetrating into an atomic-polarized medium along the magnetic fields[3]. On the other hand, the ³He nuclear-polarization is measured by the beam-foil spectroscopy[4][5]. In the beam-foil spectroscopy we measure a circular polarization of photons emitted from the polarized ³He particle after transversely go through a carbon foil, $5\mu g/cm^2$ in thickness.

2 Measurement of Rb atomic polarization

A set up for a measurement of the Rb atomicpolarization is shown in Fig. 1. A linearly polarized light from a diode laser goes through a Rb oven located in the magnetic field $(2\sim3T)$ and a $\lambda/2$ plate and is splitted into a parallel and a perpendicularly polarized lights to the plane of the incidence by a polarizing beam splitter. These splitted lights are respectively detected by photo-diodes. Electric currents generated by the two photo-diodes are converted into voltages signals using operational-amplifiers and are feed into the ADC. The Faraday-rotation angle is measured rotating the $\lambda/2$ plate with a stepping motor which is controlled by the SUN workstation.

In Fig. 2 plotted points are the observed ratio of the two components of the lights splitted by the polarizing

The experimental set up for a measurement of the Rb atomic polarization.

beam splitter. From this figure the Faraday rotation angle is determined in the precision of \pm 0.05 degrees when the Rb oven temperature is 20 °C. This precision corresponds to that of the Rb atomic- polarization of \pm 0.03.

3 Measurement of ³He nuclear-polarization

The ³He nuclear-polarization produced by the ³He polarized ion source is measured by the beam-foil spectroscopy[4][5]. A schematic view of this equipment is shown in Fig. 3. We observe circularly polarized photons emitted via the transitions between the $3^{3}P_{J}$ (J=2,1,0) and $2^{3}S_{1}$ states of ³He I. Fig. 4 shows a typical photon spectrum (closed circles) for a ⁴He incidence instead of a ³He observed by a monochromator located at the polarimeter position. It is shown from Fig. 4 that the $3^{3}P-2^{3}S$ transition is relatively intense. The life time of this transition (~ 100 ns) is known to be much longer than hyperfine interaction periods, therefore, this transition is suitable for the beam-foil spectroscopy. To observe this transition selectively, a 391.5 nm wavelength-filter (a transmission efficiency of 41.5 % at 20 nm FWHM) is inserted between a convex lens and a $\lambda/4$ plate. A spectrum with this filter is also shown in Fig. 4 (open circles). It is seen that the filter successfully chooses only the $3^{3}P-2^{3}S$ 389 nm transition.

Thus, the ³He nuclear-polarization is obtained by measuring the intensity asymmetries of the circularly polarized light for the $3^{3}P-2^{3}S$ transition[5]. However, because of a failure of a power supply of a pumping laser

 $\lambda/2$ Plate Rotation Angle [Degree]

Intensity ratio of a parallel polarized light to a perpendicularly polarized light to the plane of the incidence vs. the $\lambda/2$ plate rotation-angle at three different temperature of the Rb oven.

for the Rb (an alexandrite pulsed laser), we cannot produce the polarized ³He beam at the moment.

To investigate an overall performance of the ³He polarimeter a test of this system by using a 17.9 keV ⁴Hebeam (with no nuclear-polarization) instead of the ³He beam was performed. Fig. 6 shows the asymmetries of the 389 nm photons observed by the polarimeter as a function of time starting from the pumping laser ignition. From this measurement an obtained asymmetry Ris

$$R = 0.9978 \pm 0.0077$$

and a resulting polarization P is

$$P = \frac{R-1}{A} = \frac{0.9978 - 1 \pm 0.0077}{0.207} = -0.011 \pm 0.037,$$

where A is an analyzing power for the circular polarization measurement. Since the measurement was performed with the ⁴He incidence with no nuclearpolarization, no asymmetry should be observed. The result is in reasonable agreement with no polarization.

4 Data taking and Control system

To flip a helicity of the pumping laser light, a pockels cell is used by controlling a high voltage supplied to the pockels cell by using an I/O register board.

The ADC, GPIB and I/O resister boards are on the VME and these boards are virtually addressed on a memory of the workstation by VME/Sbus interface board (SF110:Solflower Computer Inc.) and controlled by this workstation CPU[6].

5 Conclusion

The measurement and control system for polarized ³He ion source recently installed at RCNP is designed and constructed.

Fig. 3

A schematic view of a 3 He polarimeter based on the beam-foil spectroscopy.

Fig. 5

An asymmetry of intensity of the $3^{3}P-2^{3}S$ photons by the ⁴He incidence. A data aquisition time is 3600 sec.

By these system it is confirmed that the Rb atomicpolarization is measured in the precision of 0.03, and the ³He nuclear-polarization is in that of 0.037 in 1 hour.

Acknowledgement

The authors thank the director of RCNP, Prof. Ejiri and cyclotron crew of RCNP for their warm support during this work.

References

- M. Tanaka at al.,"Method for Production of a ³He Beam with High Polarization and High Intensity", Phys. Rev. A52, (1995) 392.
- [2] T. Yamagata at al.,"Development of RCNP Polarized ³He Ion Source Based on Electron Pumping", Nucl. Inst. and Meth. in Phys. Res. A, in press.
- [3] F.Strumia," Magnetic Rotatory Power of Optically Pumped Na Vapour and its Application to the Study of Longitudinal Relaxation Time and of Buffer-Gas-Pressure Broadening of Optical Lines", Nuovo Cim. 44B, (1966) 378.
- [4] H.J. Andrä,"Fine Structure, Hyperfine Structure and Lamb Shift Measurements by the Beam-foil Technique", Physica Scripta 9, (1974) 257.
- [5] T. Ohshima at al.,"Production of a Nuclear Polarized ³He Beam", Phys. Lett. B274, (1992) 163.
- [6] Y. Arimoto at al.,"The Data Taking and Control System for Polarized ³He Ion Source Based on MEC-SIS", RCNP Annual Rep. (1995) 180.