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Abstract 

The plasma micro-undulator is a compact light 
source in which a relativistic electron beam radiates 
in an oscillating electric field of the rippled ion-space­
charge instead of an oscillating magnetic field of con­
ventional undulators. In the present paper, we pro­
pose a new method of creating the plasma micro­
undulator: a combined technique of laser interference 
and resonant photoionization, where the pitch and 
density of plasma ripples have been controlled sep­
arately by a laser alone. A preliminary design of the 
undulator with the pitch of 10-100 JLm, the number 
of ripples of 10G-1000 and the undulator constant of 
0.1-1.0 has been discussed. 

1. Introduction 

There has been a considerable attention to develop 
a compact free electron laser (FEL) since it has many 
advantages over conventional lasers, such as high out­
put power and brightness, high conversion efficiency, 
tunability over wide range of wavelength and long life, 
all of which are quite important for applications. In 
general, FEL consists of a magnetic undulator and a 
Fabry-Perot optical resonator. In the magnetic un­
dulator, permanent magnets whose polality changes 
alternately are aligned periodically.When a relativis­
tic electron beam is injected into the undulator along 
the axis, it experiences a transversely oscillating force 
and emits an intense electromagnetic radiation along 
the beam path. 

The wavelength of the undulator radiation /1/ is 
given by 

A=- 1+-Au ( K 2
) 

2r2 2 
(1) 

where A is the wavelength of radiation, Au is the 
wavelength of undulator (pitch of magnets), 1 = 
(1 - ~: )-1/ 2 is the relativistic factor and K is the 
undulator constant defined as 

K = ecBoA~ = 93.4Au(m)Bo(T). (2) 
27rmoc 

It is to be noted that A is proportional to the pitch 
of magnets and inversely proportional to the beam 

energy. Since it has been difficult to make Au much 
shorter than 10mm due to demagnetization of perma­
nent magnets, a large accelerator has been required 
inevitably to obtain shorter-wavelength radiations ex­
tending to visible or uv region. 

Recently, an alternative concept, a plasma micro­
undulator has been reported /2,3/, where a relativis­
tic electron beam has been injected obliquely into 
one-dimensional, plasma-density ripples. The elec­
trons then experience a transversely oscillating elec­
trostatic force (induced by the periodic ion-space­
charge distribution) during propagation in the rip­
ples and emit undulation radiation. The plasma 
micro-undulator has a potential of an extremely com­
pact and short-wavelength FEL which is rather diffi­
cult by conventinal magnetic undulators. This pa­
per proposes a new scheme for the formation of 
the plasma micro-undulator: a laser-interference, 
resonant-photoionization scheme using a coherent, 
tunable laser. In particular, we discuss a preliminary 
design of the undulator with Au = 1G-100 JLm, the 
number of ripples, N =100-1000, K = 0.1-1.0. 

2. Principle 

Figure 1 explains the principle /4/. A well­
collimated laser beam at wavelength AL (wavenumber 
k = 27r / AL) and intensity 10 is divided into two half­
intensity beams by a half mirror A and a full mirror 
B. These beams interfere at the intersection with an­
gle ¢ and create optical fringes. As is well known, the 
total intensity becomes 

I = 10 [1 + cos ( 2kx sin ~)] , (3) 

and the pitch of fringes is given by the formula: 

d=~. 
2sin ¥ (4) 

When a plume of neutral gas is introduced into this 
region, a plasma will be created by photoionization. 
Since optical fringes correspond to a spatial modu­
lation in the laser intensity and the plasma density 
should increase in proportion to the laser intensity 
(without saturation), we can obtain plasma density 
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ripples which are quite regular reflecting the coher­
ence of laser. It is worth emphasizing that the pitch 
of ripples is controlled only by optical parameters, A£ 
and¢. 

We have considered two photoionization schemes: 
resonant ionization and tunnel ionization 15/. In reso­
nant ionization, the laser wavelength has been tuned 
to the energy level of a neutral atom. However, el­
ements of interest have the ionization energy U; of 
at least 5-10 eV (the minimum energy is 3.9 eV of 
Cs). So, the ionization occurs by absorbing two or 
more photons. Shibata et al. 16,71 have developed 
one-wavelength multi-step resonant photoionization 
schemes: 

Nd(U; = 5.52eV): 
Gd(U; = 6.15eV): 

441.96 nm two step, 
575.19 nm three step, 

which use resonant metastable states. These schemes 
should be most suitable for our purpose. Two­
wavelength schemes developed for laser isotope sep­
aration are also considered to be applicable. The 
plasma created by resonant photoionization has quite 
low temperature ( < 0.1 eV). This is an important 
feature because the life time of plasma ripples is pre­
dominantly limited by thermal expansion. 

When a neutral atom is irradiated by an intense 
laser beam of greater than 1014W lcm2 , its coulomb 
potential barrier is strongly deformed and a bound 
electron is liberated by tunnel effect. Tunnel ioniza­
tion requires strong compression (focusing and bunch­
ing) of the laser pulse to achieve a high power density 
above threshold. However, this leads to degradation 
in the periodicity of interference fringes. Therefore, 
we conclude that resonant-photoionization scheme is 
more appropriate for our purpose. 

3. A preliminary design 

Here, we consider design parameters of the plasma 
micro-undulator for a compact FEL. When plasma 
density ripples are of the form: 

( . 27r ) n = n0 1 + sm dx , (5) 

an alternating force acting on a relativistic electron 
beam injected at an angle () is given by 

2 • () I no F = e n 0 cos kus · sm cos() kuEo ex ku, (6) 

where ku = k cos() = 27r I Au, Au = dl cos(), cos() = 
s · xl sx and s is the coordinate along the beam axis. 

For typical()= 45 deg, it becomes Au = ,fid = 1.41d. 
The performance of undulators is well characterized 

by K of eq.(2). Since brightness of the undulator ra­
diation is proportional to K 2 , small K leads to an 
inefficient device, while too large K (K » 1 ; wig­
gler mode) causes quite large broadening in the radi­
ation spectrum and increase in the emittance. So it 

is reasonable to assume K = 0.1-1.0. In addition, we 
employed the following parameters: d = 10-100 J-Lm; 

N = 10Q-1000; the length of undulator, L = N d = 
1 em; Nd plasma (two-step photoionization, A£ = 
441.96 nm). Since Lis comparable to the diameter of 
laser beam, D, the effective volume of undulator, V 
becomes V:::::; L 3 = lcm3 . From eq.(4), the interfer­
ence angle ¢ required for d = lOJ-Lm and 100J-Lm are 
2.5 deg and 0.25 deg, respectively (see also Fig. 2). 
When a cost-effective 10 MeV (r = 21) linac is used, 
we can cover wavelengths of 20-200 nm. 

Finally, we examine the requirement for the 
plasma density and laser energy. Suzuki 181 cal­
culated K for three types of electron beams: short 
bunch (radius r0 , lengthl0 « Au), long bunch (r0 « 
Au "' lo) and uniform beam (ro, l0 < Au)· He showed 
that the plasma density was proportional to KIA~ 
and was about 2 x 1016cm-3 for Au = 10J-Lm and 
2 x 1014cm-3 for Au = lOOJ-Lm under K = 1.0. A 
rough estimate of the laser energy should be given by 
np VU;/rn where nP is the plasma density and 'f/L is 
the efficiency of photoionization. When typical val­
ues, np = 1015cm - 3 , V = lcm3 , U; = 5.52e V and 
'f/L = 0.1, we obtain 9 mJ. The latest pulse-dye-lasers 
and solid-state-lasers will cover this energy without 
difficulty. A schematic view of the system is shown in 
Fig. 3. 

There remain items to be further examined. 
• Laser pulse length 
The laser pulse length T£ must satisfy the condition: 

L 
- < T£ < Tr, 
c 

(7) 

where Llc=30 ps. The life time of ripples, Tr is pre­
dominantly determined by thermal expansion as 

0.5d 
Tr:::::!". T;+T, 

M, 

(8) 

For Nd plasma, Te < T; ::::: T0 (vaportemperature) :::::; 
500K has been reported. This yields Tr = 30ns for 
d = 10J-Lm, so that eq. (7) is easily satisfied. 
• Beam attenuation due to neutral collisions 
Rutherford scattering is dominant. The attenuation 
rate, flne I ne is estimated using the cross section of 
Rutherford scattering, CJR to be: 

(9) 

where 1 = 21(10MeV), the neutral density n0 = 

3 x 1016cm-3 (1 Torr), L = 1cm, and scattering angle 
of 10-2rad are assumed. 
• Repetition 
Once the electron beam interacts with the plasma un­
dulator, the plasma will break up. So, the repeti­
tion rate, f will be limited by the time for a plasma 
with a flow velocity u0 to traverse a distance D as 
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f ~ u0 / D. When u0 ~ 1000m/s and D = 1cm, we 
have f ~ 100kHz. 

4. Application to a compact soft x-ray source 

We showed above that a combination of a 10-
MeV linac and a 10-f.tm plasma undulator can gen­
erate soft X-ray radiation. However, the conventional 
linac is too large to realize a table-top device. Re­
cently, there has been a rapid progress in the devel­
opment of plasma-based accelerators in which the in­
teraction between a dense plasma and a ultra-short­
pulse driver beam (laser beam or electron beam) gen­
erates strong accelerating fields of order of Ge V /m. 
For example, a LWA (laser-wake-field accelerator) ex­
periment at KEK /9/ has demonstrated acceleration 
of electrons up to 18 MeV over a distance of 0.6 mm. 
However, there has been a problem that diffraction 
limits the laser-plasma-interaction distance to c::: 1r Z R 

(ZR : Rayleigh length) and optical guiding /10/ using 
a parabolic plasma-density profile (plasma channel) 
has been proposed. Our laser-interference, resonant­
photoionization scheme will be useful to create plasma 
channel too. Two sets of plasma density ripples cre­
ated with intersection at 90 deg by four laser beams 
form a bundle of square plasma channels /11/. It is 
clear that the density and diameter of plasma chan­
nel can be easily controlled by the laser intensity, 
laser wavelength and interference angle. A combined 

laser half-mirror 

electron beam 

Fig. 1. 
Optical fringes by 
interference of two 
laser beams. 

Tunable laser 

mirror 

B 

system of LWA and the plasma micro-undulator is 
quite attractive because it has a possibility of mak­
ing a table-top x-ray FEL. In the beginning, proof-of­
principle experiments will be needed. 
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Fig. 2. Pitch d vs interference angle <j) 

Fig. 3. 
A schematic view of 
plasma 
micro-undulator. 
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