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Abstract 

Nonlinear resonances in the longitudinal phase-space 

of a multi-stage Free-Electron Laser for the Two-Beam 

Accelerator have been studied. We have developed a 

new analytic theory based on the macroparticle model 

and the perturbation method. A resonance-structure 

observed in simulations is found to be modeled by the 

nonlinear pendulum equation and to depend on a 

waveguide dimension. 

1. Introduction 

A Two-Beam Accelerator (TBA) is a possible candidate 

for future linear colliders, in which rf power required for 

a high-gradient linac is provided from a Multi-stage Free

Electron Laser (MFEL) [1,2] as shown in Fig. 1. The 

MFEL has some unique features. First a bunched beam 

drives each FEL. Second it has a periodicity: after 

amplification of input seed-power in each FEL, the driving 

beam is re-accelerated with an induction unit for energy 

replenishment to go to the succeeding stage. This fact 

means that rf and beam characters vary periodically and 

a bucket evolves rapidly in each PEL. 

Fig. 1 Schematic picture of TBAIFEL 

One of the interesting issues in the MFEL is the 

resonances between the synchrotron motion in a bucket 

and the periodicity of the MFEL [3]. The resonances 

lead to a formation of islands within a rf bucket in 

longitudinal phase-space, and degrade the performance 

of the MFEL as an rf source. We suppose that the 

resonances should be serious when the power-density of 

the amplified rf is strong. 

This paper presents the nonlinear resonance in the 

MFEL for the recent version of TBA [4,5], not for the 

early one [3]. Section 2 briefly shows the simulation 

results which show the existence of the resonance. We 

show in section 3 that by use of the macroparticle model 

[6-8], the motion of electron in the phase space of the 

MFEL can be described by the nonlinear pendulum 

equation with periodically and rapidly time-varying 

"mass" and "length". Section 4 shows how the resonance 

can be theoretically analyzed with the perturbative 

calculation. 

2. Simulation 

The well-known one dimensional FEL simulations 

[9,10] have been performed. We have assumed a 

rectangular waveguide TE01 mode as a signal wave. 

Typical parameters of the MFEL of interest are listed in 

Table 1. The high rf power-density with a rapidly 

increasing ponderomotive force would give rise to strong 

resonances. In order to evaluate effects of the rf power

density on the resonances, only the waveguide width a· 

is varied while the other parameters are fixed. For a 

relatively wide waveguide (a' ;::::10 em), our previous 

simulation shows that the beam propagates from the first 

to the 300-th stage without detrapping, and maintains the 

original bunch shape [7]. For cases of smaller waveguide 

a'= 8, 4 em, meanwhile, the fourth and third-integer 

resonances are observed as shown in Fig. 2. These 

resonances are considered to be caused by the strong rf 

power-density resulting from the reduced waveguide 

width. When these resonances occur, the beam continues 

to lose its population, the rf power decreases, and the 
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signal phase changes [4]. These are significant problem 

for the multi-stage rf-source where transport of a high 

current beam over a long distance is indispensable to 

maintain a constant amount of amplified rf power. 

Table 1. FEL parameters for TBA/FEL 

beam current I 2 kA 
e 

beam energy y 23 
energy gain per period ll.y 1 
wiggler wave length A.w 26 em 

wiggler length per period L w 52 em 

wiggler peak field Bw 3.85-3.6 kG 

signal frequency f. 17.1 GHz 

input rf power l!n 10 MW 

waveguide width a 
. 

20-4 em 

waveguide height b • 3 em 
number of FEL stage 300 
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FIG. 2 Longitudinal phase-space structure by FEL 
simulations. (a) the fourth-integer resonance (waveguide 

* . * width a = 8 em). (b) the third-integer resonance (a = 4 
em). 

3. Nonlinear pendulum equation 

Following the Ref. 3 and using the definition of the 
macroparticle [6-8], the Hamiltonian for the MFEL can 

be written as 

N { ws(1+a:) 
H(e,g,E,x;z)=L (kw-OkJ(r.+e)+ ( . ) 

1 2c Y. + e 

-a (eZ0J, J112 
(E- NyJ' 2 cos(vr. + 5) + dy. s}. 

w m,c2 N 112 Y. + e d.z 
(1) 

where r .. 11'. are the Lorentz factor and ponderomotive 
phase of the macroparticle, e , 5 are deviations from the 

energy and phase of the macroparticle, N the number of 

Particles, a = eB /.Jim ck the normalized wiggler w w e w 

amplitude, ok = w fc- k the shift of longitudinal s s s 
wavenumber from its value in vacuum, ws rf angular 

frequency, ks = ~(wJc Y- (n/ a'Y the wavenumber 

for TE01 mode, J, beam current density, e, normalized 

signal-field, kw the wavenumber of wiggler, (/)s the signal 

phase, e and m, are the charge and rest mass of electron, 

c the speed of light, z longitudinal coordinate, 

Z0 = 377Q, E = Nm/e: /eZ0J, and X= -qJs. 

Expanding the Hamiltonian (1) in powers of efr. and 
retaining the dominant terms, we have 

H(e,5;z) = G(z)E2 /2- F(z)cosvr. cos5 

+F(z)sinvr.(sins-5), (2) 

where G(z)=ws(1+a:)/cy;, F(z)=aweJy •. 
Neglecting friction terms which are proportional to 5' 

because of their smallness, we obtain a nonlinear 

pendulum equation 

5'' + GF{sin vr.(coss -1) + cosvr. sins} ... 0, (3) 
from the Eq. (2), where primes denote differentiation 

with respect to z. The macroparticle model assumes 

Y. oc aw; hence GF in Eq. (3) is determined mainly by 

es which is written in a term of the trigonometric function 

[8], es(z) =: (2K/albl)sin(lblz/2), where a, b, K, and 
K are constants defined in Refs. 6, 7. 

Figure 3 shows the results of numerical integration of 

Eq. (3) for a· = 8, 4 em. We observe that Eq. (3) can 

well reproduce the results of the FEL simulations seen in 

Fig. 2. Thus, we consider the Hamiltonian (1) with 

E oc e:, X= -qJs determined by the macroparticle model 
as a theoretical base to analytically assess the nonlinear 
resonances in the MFEL. 
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FIG. 3 Phase-space plots of the nonlinear-pendulum's 

solution for (a) a' = 8 em and (b) a' = 4 em. 

4. Isolated resonance theory 

Using the isolated resonance theory [11] which has 

been established in beam dynamics of circular 
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accelerators, we can calculate the size and position of 

the primary resonance islands [4]. Expanding the 

Hamiltonian (1) in powers of sand ejya: 

H(c,~;z) = Gc2 /2 + F/i,2 /2 +(perturbations) (4) 

where Fe = F cos 1/f a. The expression can be regarded 

as the non-autonomous one degree of freedom 

Hamiltonian for a pendulum with time-varying "mass" 

G and "length" F;. affected by nonlinear perturbations. 

Using the generating functions F,(£,£;z) = S£/ .,jG(z) 

and F;(~,O)=-(a+tan0)~2 /2f3, where a, f3satisfy 

2/3/3" - /3' 2 + 4GF;/32 = 4, (Sa) 

a= -/3'/2, (5b) 

the Hamiltonian ( 4) is transformed to 

H(J, O;z) = ( V 0 j f3(z) )1 +(perturbations). (6) 

Here f3 is referred to as a longitudinal amplitude function 

in the MFEL, which is a quantity analogous to a transverse 

amplitude function in circular accelerators. This function 

represents the orbital evolution of the bunch envelope in 

the MFEL. Instead of z, we use a new independent 

variable a defined by a= (1/vJJ)/ f3(z')dz', where 

V0 = (1/211: )j 1/ f3(z')dz' is referred to as the 
Lw 

longitudinal tune and 271:V0 is the phase advance per 

FEL period. Retaining only the dominant terms after 

some straightforward mathematical manipulation and 

according to the isolated resonance theory [11], we have 

the "time"-independent Hamiltonian for the isolated third

integer resonance: 

H,(J,O) = Sm 13 J + hJ2 + h,}312 sin(30 + E>J, (7) 

where 8 m 1 3 , ~ , h3 and 8 3 are all constants which depend 

on FEL parameters [4]. The Hamiltonian for the fourth

integer resonance also can be calculated in a similar way 

[ 4]. Eventually we arrive at the exact mathematical 

formula necessary to theoretically asses the primary 

resonance observed in the simulations. Fig. 4 shows 

lines of the equi-Hamiltonian in the phase-space for a* 

= 8, 4 em in the rectangular coordinates P = -fiJ sinO, 

Q = W cos 0 to compare with Figs. 2, 3. The calculated 

position and size of the islands are in agreement with 

simulations [ 4]. The transition of phase-space structures 

in Figs. 2, 3 also can be explained with the above theory 

[4]. The longitudinal tune V0 increases with a decrease 

of the waveguide width a'. When V0 is more than 1/4 

(1/3), the fourth (third)-integer resonance can occur. 

This theory is able to give a crucial suggestion in 

choosing practical MFEL parameters. 

(a) (b) 

FIG. 4 Phase-space plots of the equi-Hamiltonian for 

(a) the fourth-integer resonance (a'= 8 em) and (b) the 

third-integer resonance (a'= 4 em). 
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