
JAERI-Conf 95-021

PB16

Graphical Representation of Objects' States for the PF Linac
Control System

Mejuevl., Abe I. and Nakahara K.

National Laboratory for High Energy Physics
Oho 1-1, Tsukuba, Ibaraki 305, Japan

Abstract
This paper describes our approach for

creating of a graphical representation of the
states of accelerator objects. For every
object which needs to display its state
dynamics we create a chart element. Any
changes in the object state are immediately
represented on the chart of this object. We
use the objects dependencies facility supplied
by Smalltalk to keep track of the objects'
states changes. This allows us to remove any
graphics related features from the Object
Model of the accelerator. Thus, the Object
Model can be developed separately and
reused in a number of applications.

1. Introduction
Accelerator control requires a convenient

graphical representation of the present state
of the objects that the accelerator contains.
For instance, there could be the possibility
either to display accelerator sections,
indicating the section state, or, a more
detailed representation also including
section's objects. For accelerator
subsystems, such as the vacuum system and
rf system, it would also be convenient to
represent the subsystem hierarchy, including
the subsystem objects in order to gather
information about their states. Usually, in
the present control systems graphical
routines are mixed with both code and data
for the control, this makes it difficult to
change the graphical part of the system
without reviewing of the control data and
code. In this paper we represent an approach
that divides a visual representation from

model. The Smalltalk language that we used
(VisualWorks) provides convenient
possibilities for such division. These are
object dependencies concepts and
application of this concept for the user
interface creation: MVC (model view
controller) concept [1, 2]. Two separate
system part, model and interface, are
represented below.

2. Model
The key point concerning the accelerator

domain model is ControlObject class (model
object class). This generic system class is
used for all system objects representation.
The accelerator, subsystem and subsystem
objects are all Contro/Object class instances.
The Contro/Object class defines a number of
properties described in [4]. However, for the
present consideration only the "state"
property is important. This property
contains symbolic values representing the
current object state. The state examples are:
"normal", "alarm" and so on. The object
state corresponds to the "state" variable of a
Contro!Object instance. Since this variable is
updated every time some object value is
changed, it always contains the object state
valid at the moment. Further, an instance of
Contro/Object can have a set of dependent
objects. The standard dependencies facility
supplied by Smalltalk guarantees that if the
"changed: #aspect" method is invoked for
the object, every dependent receives an
"update: #aspect" message. The aspect
parameter is used to separate independent
object modifications and to suppress

-292-

JAERI-Conf 95-021

redundant updates [2]. The Dynamic model
for the change-update method together with
the Object Model for the ObjectChart
(explained below) and Contro/Object classes
are represented in Fig. 1. We use Rumbaugh
method notation [3].

3. Interface
The objects' states are represented in the

chart (Fig. 3). A chart element contains
fields for the name (top) and state (bottom).
The state field dynamically represents the
model object state. In the simplest case, it
could be only a text string, like "normal",
and "running"; however it is possible to map
some states to pictures.

4. Update method
For a graphical representation of the

accelerator object' states we create the
OhjeetChart class. An ObjectChart instance
corresponds to an accelerator chart element;
it is responsible for the dynamic
representation of some object's state. The
model object reference is contained in the
"object" variable of the ObjectChart. To
assign and get this variable we use methods
"object:" and "object" correspondingly.
When we set a new object to display by
sending the "object:" message, the receiver is
registered as a dependent of this object.

If the model object "state" variable is
changed through the "state:" message, this
object sends the message "changed: #state"
to itself. That causes the message "update:
#state" be sent to object dependent:
ObjectChart. Having received an "update:
#state" message the ObjectChart instance
retrieves the state variable value from the
model object which is stored in its "object"
variable. After that, ObjectChart draws on
the user terminal picture or text
corresponding to the present model object
state.

This method allows us to remove any
messages responsible for graphics from the
domain model. The domain model can be

developed independently, and multiple
graphical modules representing different
aspects of its state can be easily connected to
it. It is also possible to reuse graphical
interfaces with different models. It is
supposed that this approach is capable of
reducing the system development and
maintenance costs.

5. Conclusions
The method represented above could be

used to display a large variety of control
system aspects. First, it can represent
accelerator subsystems with the "normal" or
"alarm" states for every subsystem object.
Also, it is possible to collect information
about states of the accelerator sections. In
this case the state resumes a summary of all
the section objects states.

Although in this paper we allow only one
object connection to an ObjectChart class
instance, in the future we will discuss the
possibility for a multiple objects connection.
With multiple connections the problem of
states priority appears. Another way to
resolve the multiple objects problem is to
create composite object in the domain model
representing the objects ·aggregation.

6. References
[l] An Introduction to Object-Oriented
Programming and Smalltalk; Lewis J.
Pinson, Richard S. Wiener; University of
Colorado at Colorado Springs, Addison­
Wesley, c 1988.
[2] VisualWorks User's Guide; ParcPlace
Systems, c 1994.
[3] Object-oriented modeling and design;
James Rumbaugh [et al.] Englewood Cliffs,
N.J.: Prentice Hall, c 1991.
[4] Application of an Object-Oriented
Analysis for the PF Linac Control System
Development; Mejuev 1., Abe I. and
Nakahara K.; Proceedings of the 20th
Linear Accelerator Meeting in Japan,
Osaka, 1995, p. 212.

-293-

JAERI-Conf 95-021

7. Figures
change state/state(newState)

ObjectChart

w
displa~ state

entry/get ewStat e

~:try/chatged(#state) Control Object I t state
....... update(#state)

update #state)

'" ObjectChart ControiObject state state object
state object -- state: object: changed: update:

Fig. 1

Fig. 2

-294-

