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Abstract 

A relativistic electron beam magnetically self

focused in a plasma is subject to a transverse two stream 

or "hose• instability. Linear evolution is described in terms 

of a tune distribution characterizing the beam, and an 

effective transverse impedance determined by the beam 

and the plasma profiles. This model is compared to cloud

in-cell simulations of three-dimensional transport of a 

beam with a Bennett profile, through a matched plasma 

channel. In the limit of large skin-depth this instability 

appears to be the primary limitation on stable beam 

transport. 

I. INTRODUCTION 

In recent years the roles of plasma in accelerators 

have been the subject of many works (1-5] emphasizing 

that plasmas provide strong coupling, for focusing and for 

acceleration making use of relativistic electron beams. It is 

less widely appreciated that this strong coupling extends to 

strong deflection and break-up of the beam. In other 

arenas, plasma-coupled instabilities have motivated 

vigorous studies over many years, all concentrating on the 

resistive hose instability [6-8], or the filamentation 

instability (9,10]. In this literature there is scant reference to 

the transverse two-stream instability (11]. Here we will 

show that the electrostatic mode of beam break-up is 

typically more virulent than any other, in the limit of large 

skin-depth, the limit of primary interest for future 

accelerator applications. 

II. ANALYSIS 

We consider a relativistic electron beam with a 

Bennett-profile [12] charge density Pb, a function of the 

radial coordinate rand the beam coordinate -r-t-z/c, where 

tis time, z is axial displacement and cis the speed of light. 

The beam propagates through a much denser plasma 

maintaining quasineutrality in equilibrium, provided the 

beam is several plasma periods in duration. Negligible 

plasma return current flows through the beam volume 

provided the plasma skin-depth is larger than the Bennett 

waist. ion-motion and radiative effects are neglected. The 

equilibrium plasma is assumed stationary in -r, created 

rapidly by the beam head. We assume for simplicity that 

the plasma profile is matched to the beam. 

To the Bennett equilibrium consider a rigid beam 

displacementY(z,-r). Combining the Vlasov equation and 

the linearized cold fluid equations one can show that 

momentum conservation for the beam takes the form 

(1) 

where a Laplace transform (indicated by the tilde) has 

been made in -r, with p the Laplace transform variable. The 

"slosh" wavenumber ks is ksfkp=3·112 for the Bennett 

equilibrium, with kp the wavenumber for small amplitude 

betatron oscillations. The normalized transverse 

impedance Z may be expressed as 

2 2 1e r. c2 
( () ) 

k, z ( p) =- r Tr( rvr) 
' 

(2) 

where re is the classical electron radius, r is the Lorentz 

factor for the beam and the brackets denote an average 

over the unperturbed beam. The pinch potential vr is 

determined from the solution of the elliptic equation in r, 

1 () J(jr (fr Jpb 
--re---=-
r Jr Jr r2 Jr (3) 
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according to yt(r,p)= QF( r,oo)- QF( r,p), The cold 

plasma dielectric function is just £•1 +CtJ,,2(r}lp(p+v) with CtJ, 

the local angular plasma frequency and v a 

phenomenological plasma electron collision rate. 
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FIG. 1. The normalized transverse impedance of a 

Bennett plasma column, for a Bennett beam, is well-fit by a 
single-mode Lorentzian with Q-2. 
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FIG. 2. The wakefield corresponding to the impedance of 

Fig. 1, overlayed with the single-mode fit. 

In general it is not possible to solve for z 
analytically; numerical solution is however straightforward 

and is depicted in Fig. 1 for the Bennett-profile plasma of 
interest here, with V=O. The wake obtained with an Inverse 

fast Fourier transform is shown in Fig. 2. This result is well
fit with a single-mode Lorentzian 

CtJz 
Z( p)... r. 

(t)~ + P(P + Vr.) 
I 

(4) 

with resonant frequency CtJL -0.71 CtJe and damping rate 

VL -0.34CtJe. The corresponding wakefield (the inverse 

Laplace transform of Z) is overlayed in Fig. 2. 

With this result it is straightforward to show that for 
k5 Z<<CtJ 9 7:, the convecting peak in amplitude varies 

asymptotically as Y- exp(z!Lg) where k5 L9 -1, i.e., growth 

proceeds rapidly, on the scale of the betatron period. 

These results apply for short-range propagation, 
kpz-0(1). Over a long range, growth is diminished by 

phase-mixing in beam electron motion. This effect can be 

modelled following Lee's work on the resistive-hose 
problem[6]. The beam centroid is represented as an 

average, Y = Jd a g( a)Y.,. The "mass ,distribution" 

g=6a (1-a) is normalized to unit integral, the 

dimensionless parameter a lies in the range [0, 1 ], and the 

components satisfy 

(5) 

The corresponding dispersion relation is readily solved to 
establish that the saturation length L5 , scales according to 
kpL:/CtJ!:r-3.4, with amplitude at saturation Y- exp(Pr) , 

where T-0.9CtJL. 

Ill. SIMULATION 

To check this model we make comparison with a 

cloud-in-cell (CIC) simulation. This simulation advances 

the plasma variables (transverse position and 
nonrelativistic momentum) in the beam coordinate 1', with a 

leap-frog algorithm governed by the electrostatic potential. 
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The corresponding beam variables are advanced in z by a 

leap-frog algorithm, governed by the pinch potential. The 

neutralizing ion background is fixed. This formulation is 

consistent with (and limited to) large plasma skin-depth, an 

ultra-relativistic beam, and negligible radiative effects. 

The saturation amplitude from the CIC simulation is 

shown in Fig. 3, overlayed with the model results, obtained 

by solving Eq. (5) in the time domain. A least-squares fit to 

the PIC results gives r-mL. For a pulse 1.5 plasma periods 

in length, saturation occurs after growth by a factor of 

1x102, for a uniform initial offset. 
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FIG. 3. Results for saturation amplitude from the 

numerical solution of the macroparticle model, the CIC 

simulation. 

IV. DISCUSSION 

Previous analyses of transverse stability have been 

performed in the limit of short plasma skin-depth where the 

effect of plasma return current is pervasive. Typically the 

plasma was assumed highly collisional, due to a low 

ionization fraction. In this limit, resistive hose growth has 

been a serious concern, with growth length scaling as 

k5L9 --rolr, and -ro the diffusion time-scale. For large skin

depth however, both resistive-hose and filamentation are 

minor compared to the strong electrostatic plasma 

resonance. Control of this beam beak-up mode favors 

damping of the wake, for example, with the plasma 

gradient considered here. Unfortunately this "cure• will 

also damp the often desirable longitudinal wake. 
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