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Abstract 

A beam tracking with a numerical integration 

method has been studied for a design of a compact 

storage ring. Suitable numerical integration schemes 

for the beam tracking have been studied. Estimations 

of calculating speeds and accumulations of calculating 

errors have shown that a Runge-Ku tta-Verner method 

and a Adams-Moulton's method are suitable for the 

beam tracking. Calculating results with various inte­

gration schemes have also shown that the numerical 

integration method can simulate an electron beam ac­

curately when calculating errors are taken care of and 

tracking turns are restricted. 

1 Introduction 

Difficulties of simulating an electron's motion in a 

compact storage ring using a superconducting bending 

magnet are as follows: 

1. non-linear terms of equations of motions must be 

treated, and 

2. complicated three dimensional(3-D) magnetic 

fields (B., Bz, B 11 ) must be considered. 

There are several methods to simulate the non-linear 

terms of equations of motion : 

1. the Canonical integration method [1] , 

2. the Lie transformations method [2] , and 

3. the numerical integration method [3] . 

The numerical integration method has advantage of 

being able to treat exact equations of motion, being 

able to treat 3-D magnetic fields easily. The longitudi­

nal magnetic fields (B.) cannot be considerd with the 

other methods. 
When non-symplectic algorithms are employed with 

a large truncation error, a phase space exhibits damp­

ing or exploring due to the noncanonical character of 

the integration algorithm. It is necessary to use a sym­

plectic numerical integration scheme to simulate an 

electron's motion for a long time not to take care of a 

calculating error and a calculating step. Greenspan[4], 

Maeda[5], and J.M. SANZ-SERNA[6] have studied 

the schemes. J.M. SANZ-SERNA, for examples, had 

solved the condition of Runge-Kutta scheme which is 

satisfied with symplecticity. But these schemes take 

much CPU time and cannot be used for a beam track­

ing. 
Considering practical uses, integration schemes 

which are not symplectic must be used to take care 

of calculating errors and to restrict tracking turns. In 

this paper suitable schemes of numerical integration 

for a beam tracking are discussed. This paper also 

discusses calculating accuracies of the numerical inte­

gration method. 

2 Formulation 

The study has been done with the tracking code 

'PROVIDENCE'[7] which uses the numerical integra­

tion method. In this code, the equations of motion are 

accurately transformed to a simple form so as to fit to 

the numerical calculation as follows: 
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where p is the radius of curvature of the reference or­

bit (constant), 1 denote the differentiation with s, and 

where a and cl are defined as follows: 
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These equations are precisely integrated by using ad­

justed step sizes. The 3-D magnetic fields (B., Bz, B11 ) 

of a bending magnet are accurately simulated. 
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The numerical integrations and the estimations of 
truncation errors are done with the following methods: 

1. a fourth-order Runge-Kutta method (R.K. 
method)[8) with a one-full step two half-step 
method, 

2. a fifth-order Runge-Kutta.-Fehlberg method 
(R.K.F. method)[8) with a embeded formula, 

3. a fifth-order Runge-
Kutta.-Verner method (R.K.V. method)[9], with 
a embeded formula, 

4. a fourth-order implicit Runge-Kutta method 
(I.R.K. method)[lO) with a embeded formula, 

5. a 12th-order Adams-Moulton's method (A.M. 
method)[ll) with a predictor-corrector method, 

6. a fifth-order Gear's BDF method (Gear's 
method)[ll) with a predictor-corrector method. 

R.K., R.K.F. and R.K.V. methods are explicit Runge­
Kutta methods. These.methods are efficient for non­
stiff systems where the derivative evaluations are not 
expensive. I.R.K., A.M. and Gear's methods are im­
plicit methods for stiff systems and a system of non­
linear equations must be solved at each step. 

3 Calculating results 

3.1 Basic model 

Calculating errors and calculating speeds are esti­
mated with. changing tolerances of the truncation er­
ror!!. Electron's motions in a constant magnetic field 
are simulated. The simulating condition is as fol­
lows: an electron's energy, a bending radius, an ini­
tial position and tracking turns are 0.8GeV, 0.593m, 
x0 = 0.02m and lOOOturns, respectively. An initial 
step size of the numerical integration is lm, and the 
actual calculating step size is adjusted that the trun­
cation error is within a tolerance. Table 1 shows 
beam positions and calculating times after 1000 turns 
tracking where the tolerance of the truncation error is 
1.0 x 10-11 m. The calculatings were done with Sun 
StationlO (96Mips). An ideal position is x = 0.02m. 
Each calculating error and its sign are different even 
if the tolerance is the same value. The ~esult that the 
absolute values of calculating errors are larger than the 
tolerance is due to accumulations of the truncation er­
rors. 

Figure 1 shows calculating speeds as a function of 
the absolute values of calculating errors after 1000 
turns tracking. The figure leads that R.K.V. method 
and A.M. method are suitable for the numerical inte­
gration method and that I.R.K. method cannot use for 
a beam tracking because the simulating speed is very 
slow. 

3.2 Mitsubishi's lattice 

Estimations of calculating errors were also done 
with the compact storage ring whose magnetic fields 
were not constant. The calculating errors are consid­
ered to be larger than errors of the basic model, be­
cause beam position's errors of each step are a cause 
of a change of magnetic field. Lattice of the compact 
storage ring is shown in fig.2 which is in the Mitsubishi 
Electric Corporation. The energy and the bending ra­
dius are 800MeV and 0.593m, respectively. The bend­
ing magnet of the ring consists of a pair of banana­
shaped coils with a field index (about -0.45m-2 at the 
center of the bending magnet)and an iron core. 

Ideal values cannot be determined like the basic 
model. The calculating errors are estimated by the cal­
culating re~ults of R.K. V. and A.M. methods. These 
methods differ in accumulations of the calculating er­
rors. ·The ideal values are considered to be within or 
very near the two calculated results. Tolerances of each 
method are so selected that calculating errors of the 
basic model are within 1 x 10-10• 

Table 2 shows the differences of the beam positons 
after 1000 tracking calculated with the two methods 
(R.K.V.- A.M.) in various initial conditions (xo, Yo) 
and various multi pole magnetic fields ( m = d.::? , n = 
d3 B ~ ). Tune was selected v., = 1.33, v11 = 0.43, respec-
tively, because of simulating an ·unstable condition. 
When a beam position became larger than x = O.lm 
or y = O.lm before 1000 tracking, the tracking was 
ended (case 9). Table 2 leads that the simulation of 
the numerical integration method has a good accuracy 
of the order of 1 x 10-9 , when calculating errors of the 
basic model are within 1 x 10-10 and tracking turns 
are 1000. 
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Table 1 

Beam positions and calculating times after 1000 

turns tracking where the tolerance of the 

truncation error is 1.0 x 10-11 m. 

Method Position[m] Time [s] 
R.K. method 0.02- 1.08 x to-n 130.1 

R.K.F. method 0.02 + 6.97 X lQ-ll 41.7 
R.K.V. method o.o2- 7.04 x w-n 21.2 
I.R.K. method o.o2 + 2.83 x w-s 87600 
A.M. method 0.02 + 7.53 x to-s 17.2 

Gear's method 0.02- 1.29 X 10-6 28.0 

Table 2 

Differences of the beam positons (Di:ff.x,Di:ff.y) 

after 1000 turns tracking calculated with the two 

methods (R.K.V.- A.M.). Initial points are 

.Bxmaximum and ,Byminimum. 

case xo[mm] Yo[mm] m[~) n[~] Di:ff.x[m] 
1 25.0 5.0 0.0 0.0 -4.97 X 10 -u 

2 25.0 5.0 5.0 0.0 -1.47 X 10-ll 
3 25.0 5.0 5.0 100.0 -2.88 X 10-ll 
4 25.0 5.0 10.0 0.0 1.85 X 10-ll 
5 25.0 5.0 10.0 100.0 -1.28 X 10-ll 
6 50.0 10.0 0.0 0.0 -1.21 X 10- 10 

7 50.0 10.0 5.0 0.0 -7.04 X 10-ll 
8 50.0 10.0 5.0 100.0 -8.34 x w-n 
9 50.0 10.0 10.0 0.0 1.99 x w- 12 

10 50.0 10.0 10.0 100.0 1.11 x 10-11 

R.K.V. 

10-10 10-5 

ERROR [m] 

Figure 1 Calculating speeds as a function of the 

absolute values of calculating errors after 1000 

turns tracking. 

--....... --

Figure 2 Schematic drawing of the Mitsubishi's 

SR ring. 

Di:ff.y[m] turns 
-1.26 X 10 ·ll 1000 
-2.14 x lo-u 1000 
-1.51 x w-10 1000 
-3.26 x w-n 1000 
-8.61 x lo-n 1000 
-1.62 x w-11 1000 
-6.32 X 10-ll 1000 
1.33 x 10-10 1000 
1.97 X 10-12 50 

-7.04 X 10-lO 1000 
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