
The 9th Symposium on Accelerator &ience and Technology, Tsukuba, Japan 1993

PROLOG LANGUAGE APPLICATION FOR ALARM SYSTEM REALIZATION IN ACCELERATOR
CONTROL

I.Frolov-, A.Vaquine
Russian Academy of Sciences Moscow Radio-Technical Institute (MRTI),

Warshawskoe shosse, 132, 113519 Moscow, Russia

I.Abe, K.Nakahara, K.Furukawa, N.Kamikubota
National Laboratory for High Energy Physics (KEK), 1-1 Oho, Tsukuba,

Ibaraki 305, Japan

ABSTRACT

Such PROLOG features as backtracking, matching and
recursive data representation are powerful tools for ALARM
system realization. Although the main idea is the
possibility to describe some technical system in recursive
form, backtracking and matching are ideal for processing
recursive data structures. This paper represents a
technique which would allow PROLOG language application
for ALARM system realization using an example of the KEK
LINAC magnet system. The technique is based on an object­
oriented internal data representation in terms of objects,
properties, relations and knowledge conception. In
addition, each property value is characterized by a
typical "time life".

INTRODUCTION

preserve only the first part of the COP definition in /1/
as the COP definition in the following form:
Definition: Object-oriented progranrning is a
method of i~lementation in which programs are organized
as cooperative collections of objects.

One of the most powerful declarative languages is
PROLOG. The conception of object-oriented programming
involving the PROLOG language (COPP) is presently in the
stage of development. The main effort regarding COPP is
gaining an understanding of the role and importance of the
internal data representation structure (lOR). In fact, the
structure of the internal data representation defines the
'genetic' of the control system. Structure is a basis of
cognition, and the most" powerful structure is a network
structure of data representation. For example, one of the
possible network form is a form of !DR in terms of the
object, property, relation, role and process. This
concepti on presently includes such ideas as a knowledge

Today•s concept of object-oriented progranrning equation, virtual object, system consciousness level,
(COP) has traditionally been associated with such
languages as a Smalltalk, C++, Object Pascal, Ada and
Conrnon Lisp Object System. The fact that all of this
languages are algorithmic i~oses conrnon features on the
style of object-oriented programming for these languages
as well as realization methods for object-oriented design
/1/. In turn, declarative principles of programming allow
us to introduce new possibilities as well as a new content
in the concepti on of OOP. 1./e can now speak about a new
content of COP since we understand COP as being a subject
of investigations and development. This statement is based
on the fact that an object conception is one of the main
philosophic categories - 'Object is all that can be in a
relation or has some property' /4/. The current COP
conceptions are poor copies from current philosophical
doctrines concerning this point. However, from another
point of view, further development of the COP conception
can enrich the philosophical thought. 'Artificial
Intelligence (AI) is an experimental philosophy' /3/ and
object conception is an integral part of AI. 1./e think more
correctly to speak about different generations and about
different levels of COP. In addition, the difference
between a real object and his reflection in our
consciousness motivates the basis for two different COP
approaches.

In accordance with the aforesaid, we propose to

intelligent unity, problem solver, goal world, real world,
planning world and learning. The integration of all these
ideas into one system requires powerful rrul ti -processor
supercomputers. However, some separate methods can be
successfully applied for solving different problems on
ordinary personal computers. Below we consider the
principles of some approach of object-oriented programming
in the PROLOG language (COPP), and demonstrate an
application of this approach for ALARM system realization
based on the exa~le of the KEK (National Laboratory for
High Energy Physics, JAPAN) LINAC Magnet System.

OBJECT-ORIENTED APPROACH

Briefly, our approach is as follows:
1. The world consist of Objects (co~lex and si~le, i.e.
every object can be part of another object while
sirrultaneously consisting of other objects).
2. Every Object is characterized by set of properties.
3. Each property value has a typical "time life". This is
the time at which the property value can be changed
significantly (time flies all become different) (for
accelerator subsystems it can mean a polling frequency).

• In process of paper preparation, I.Frolov worked in KEK
as a foreign researcher.

-82-

4. Each pair of Objects can be associated by a proper
relation <for example: an injector is a part of an
accelerator (in this case, "part of" is a relation).
5. In accordance with the property's values and relations,
all Objects can be divided into the classes.

current_base(ID,Val,TD(Time,Date))

Here, ID is an object identificator; Value is a
•current• value; and Time and Date represent when
this property value was calculated (received). In such a

lole can represent this in PROLOG terms in the case, the first predicate can be. presented in the
following manner:
Each object can be identified by some identification
rnJTber (ID): for example, integer. A property can be
represented by a predicate with two arguments:
identification number and property value. This predicate
can work in two different regimes. The first regime is
when a property value is a variable:

current(l,X):- var(X), .•

This is a form of request. It means that we want to know
the value of the •current' property. The second regime is
for a •current• predicate which can be presented, for
example, in the following manner:

current(1,5).

This predicate means that the current value of some magnet
(ID=l) nust be equal to 5 (for example, amperes). In
this case, the predicate nust implement some procedure in
order to make the current value for the magnet (ID=l)
equal to 5 amperes.

The relation between two objects can be represented
by a predicate with two arguments: the identificator of
the first object and the identificator of the second
object. For example, if some accelerator (object) has
ID=l, and its injector has ID=2, the predicate,

part_of(2,1).

means that the injector (ID=2) is a part of the
accelerator (ID=l). It's necessary to say here that
conceptions concerning property and relation are in
principle different. To explain this difference, we
introduce the following definition:
Definition: Property is a characteristic of an
object which nust be preserved under any changes of the
surrounding world.
For example, although the mass of some object would be
changed under lolorld changes in accordance with Einstein's
theory, such characteristics as mass would be preserved.
In turn, such a relation as 'president' for M. Gorbachev
disappeared (for Gorbachev) after the destruction of the
USSR.

To realize the 'time life' conception, we can apply
the following approach: we can introduce for each property
a database. For example, for a current property we can
introduce a database (facts in PROLOG terminology)
according to the following form:

following manner:

current(Id,X):- var(X),
current base(ID,X,T D(Time,Date)),
system_date(CurDate),
system time(CurTime),
check(Time,Date,CurDate,CurTime).

Here the 'check' predicate checks the possibility to use
an old property value. In such a case, the following
•current' predicate must write a new current value in the
database. For example:

current(Id,X):- var(X),
camac address(Id,Address),
camac-request(Address,X),
system date(Date),
system-time(Time),
retract(current base(Id, ,)),
asserta(current-base(Id,X,-

T_D(Time,Date)).

This predicate reads the current value from a camac device
and writs this value into the database. Of course, a
database service can be realized in a more sophisticated
form: for example, as a stack with a limited depth, or the
predicate can control the size of the available memory
before inserting a new fact.

About classes:
Definition: 'By a class is usually meant a
collection of individuals, to each of which a particular
name or description can be applied;' /2/
In turn, in the context of the object-oriented design in
/1/ was proposed the following definition:
Definition: 'A class is a set of objects that
share a common structure. and a common behavior.•
As can be seen, any set of objects is defined in terms of
our approach to fits any definition. For example, consider
the following set of objects:

type(Id,Type),Type =magnet,
sector(Id,Sector),Sector =:= 2.

This set is a class of magnets - sector number 2. From one
side, this collection can be characterized by such common
descriptions as I magnet I and I sector 2 I. From
another side, such properties as the type and sector are
elements of structures. The common behavior is based on
common predicates. For example, the

-83-

current (. .•) predicate is valid for each element
of the aforesaid class.

In addition, this approach allows an interesting
interpretation of such object notions as a state; behavior
and identity. The state of an object enc01Jf1asses all of
the properties of the object, plus the current values of
each of these properties; object behavior is expressed in
terms of its state changes. In fact, this is in full
accordance with the appropriate definitions given in /1/.
As for the Identity mechanism, this approach enables us to
identify objects by a combination of properties and
relations. For exa~le, to change the •current' value of
the 'ST0-01X' magnet we can use the following approach:

name_(X,'ST0-01X'),current(X,5).

In this exa~le X is a variable. As can be seen, in order
to indicate some object, we don't need to use an ID number
in an explicit form. The first predicate
name(X, 'STO-OlX') plays the role of an
indicator. However, to indicate the same magnet, we can
also use another form - for exa~le:

sector(X,l),cntl(X,3),ch(X,l),
current(X,Current).

MAGNET SYSTEM

OBJECT-ORIENTED ANALYSIS

information concerning the magnets (for exa~le: magnet
current and magnet type (steering, bending, quadruple,
focusing or virtual)).
In addition, since 360 is a sufficiently big number for
human brains, we can apply an object-oriented
dec~sition technique. In accordance with magnet scheme,
all of the magnets can be divided both functionally and
geographically into 7 sectors (0, 1,2,3,4,5,7). In turn,
each sector would contain a few subsystems: power supply
controllers. Each power supply controller would be
characterized by some number (cntl). In accordance
with this structure, we introduce the following additional
objects:

Maqnet control system (MCS)
(ID = 600)

This object is characterized by the state property (normal
or fault) and type property:
type(600,'magnet system').

MCS - sector o (ID = 500)
type(SOO,'magnet system')

MCS - sector 7 (ID = 507)
Each object of this group is characterized by the state
and sector properties.

MCS • sector o, cntl 1 (ID = 401)

MCS sector 9 1 cntl 8 (ID = 498)
The KEK Linac magnet system COIJflrises approximately 360 Each object of this group is characterized by the state,
magnets. In turn, each magnet includes some subset of the sector and cntl properties.
following set of subsystems:

- power control (power ON or OFF);
- magnet water control;
- magnet tempera·ture control;
- cooling system of magnet control box (FAN);
- over voltage control;
- over current control;
- transistor te~rature control; and
- transistor state control (fault or normal).

One of the possible solutions represents each subsystem as
an object on the software level, is characterized by the
state property (fault or normal) and is connected to the
magnet object by the 'part_of' relation. Another solution
is to code the available control subsystems and the
current state of this subsystems in bitmask form (for
exa~le: bitmask and interlock properties, respectively).

OBJECT-ORIENTED DESIGN

The goal of our system (ALARM system) determines the
possibility of an abstraction technique. To successfully
realize our goal we don't need to take into account all

OBJECT-ORIENTED PROGRAMMING

For ALARM system realization we shall use only the
following magnet characteristics: name of magnet
(name) , type of object (in our case either
magnet o7 •magnet system•), state of magnet estate
(for exa~le nornlal of fault)), bit mask characterizing
the available magnet characteristics under control
(interlock) 1 bit mask characterizing the state of
some magnet characteristics under control (bitmask),
sector number (sector) 1 and power supply station
number (cntl), power supply channel number (ch). In
the PROLOG form:

name(l,'STO-OlX'),type(l,magnet),
sector(l,O),interlock(l,40),
cntl(1,3),ch(l,l)

This information can be stored as facts.
In addition, the relationship between this object and the
Magnet Control System (MCS) sector number (0) and the
power supply controller number (1) CMSC-sector0-cntl1)
(10=401) can be represented as a predicate

-84-

part_of(1,401)

In turn, object (ID=401) is a part of the object MCS·

sectorO (ID=500), and object (ID=500) is a part of the

object Magnet Control System (ID=600). These facts can be

represented in the following manner:

and so on.

part_of(401,500)
part_of(500,600)

.We can now introduce the following predicates:

bitmask(X,Maskvalue):­
var(Maskvalue),
name (X,MagnetName),
mgsts(MagnetName,Maskvalue)

The mgsts predicate was developed in c language and

implements the hardware interface to the magnet equipment.

state(X,State):- var(State),
type(X,magnet),
interlock(X,Vall),
bitmask(X,Val2),
Vall=Val2,
State= normal,!.

state(X,State):- var(State),
type(X,magnet),
State= fault,!.

state(X,State):- var(State),
type(X,'magnet system'),
var(StateValue),
part of(Y,X),
not(state(Y,normal)),
State= fault,!.

state(X,State):- var(State),
type(X,'magnet system'),
State =normal.

This predicate means that the state of some object is at
fault if the state of some its subparts is at fault; in
the opposite case its state is normal.
In order to start up all of the control procedures, we can

introduce the following predicates:

main control:-
repeat,
state(600,X),
state_processing(X),
fail.

state_processing(normal):- !.
state_processing(fault):-

inform_operator.

Although we used ID number <600) in the main_control

predicate in an explicit form, we can easily rewrite the

state (600 ,X) predicate in the following form:

name (Y,'Magnet Control system'),
state(Y,X),

For this approach realization we used a personal computer

(PACKARD BELL (extended memory · 8 Mb, 50 Mhz)) as well
as the IF/PROLOG version 4.1.9 MS·DOS 386·486. To poll all
magnets, the PROLOG part (the main part) of the program

spends approximately 0.66 sec. It's a very good time
characteristic for slow control systems. Another advantage

of this approach is the simplicity of program development

and implementation. In fact, one person can develop such a

program in only three weeks. We don't mention here the
simplicity of program changes, since it's obvious due to
the fact that it is based on the declarative programming

principles.

CONCLUSION

This paper presents a brief description of our approach
and problem solution. However, we hope that the aforesaid

example provides some understanding of the advantages of
declarative programming in object-oriented programming.

The main advantage is an object Identity mechanism. In

c~arison with algorithmic object-oriented languages, the

Identity mechanism of this approach is perfect. This

mechanism opens up the possibility of using a limited

natural language and the concept of a virtual object.

Acceptable time characteristics and approach simplicity
provide good possibilities for practical applications. In

addition, today, this approach also includes such
conceptions as a 'knowledge equation', system
'consciousness level', problem solver, goal world, real
world and planning world. In turn, 'knowledge equation'
provides a good tools for the realization of learning
mechanisms.

REFERENCES

[1] Booch, Grady - 1991
Object oriented design with applications.
Redwood City: Benjamin/Cummings
[2] George Boote
An Investigation of the Laws of Thought on which are
founded the Mathematical Theories of Logic and

Probabilities.
Dover Publications, INC., New York

[3] A Future of Artificial Intelligence.

Izdatelstvo Nauka 1991
[4] Philosophy Dictionary.
Izdatelstvo Nauka 1989

-85-

