
The 9th Symposium on Accelerator &ience and Technology, Tsukuba, Japan 1993 

Development of Device Drivers Embedded in Real Time OS 
for SPring-S SR Control System 

T.Masuda, S.Fujiwara, T.Nakamura, H.Takebe, and T.Wada 
JAERI-RIKEN SPring-8 Project Team 

SPring-8, Kamigori, Hyogo, 678-12, JAPAN 
masuda@rknaSO.riken.go.jp 

Abstract 

A distributed computer system has been adopted for 
the SPring-8 SR control system. For lower level 
computers, we intend to adopt VMEbus computer 
systems with the real time OS which are compliant 
with POSIX. 

For R&D study, we introduced LynxOS and wrote 
device drivers for Digital Output(DO), Digital 
Input(DI) and Analog Input(AI) boards on VMEbus. 
They were successfully operated with device drivers. 

I. INTRODUCTION 

The control system of the SPring-8 storage ring (SR) 
is designed to have three levels of hierarchy such as 
presentation layer, processing layer and equipment 
layer. An open system based on international standards 
is preferable because of its expandability and 
maintainability [1,2]. In the presentation layer, 
Engineering Work Stations(EWSs) running UNIX OS 
and X-terminal are used. To select the UNIX provides 
a merit of vender independence. In the processing 
layer, VMEbus computer systems are used. 

The selecting criteria of an OS for VMEbus computer 
system are having real time features and being 
compliant with POSIX(Portable Operating Systerri 
Interface for computer environment). POSIX is a 
standard OS proposed by IEEE committee. Among such 
OS's, LynxOS and HP-RT are commercially available 
candidates [3]. 

Generally speaking, there are two ways to access 
and to control 1/0 boards from application programs. 
One is the way with "shared memory", and the other 
is with a "device driver". The merits of using shared 
memory are faster access speed and easy realization. 
However, using device driver is more preferable, 
because it has advantages as bellow. 

• Hardware interrupt can be treated. 
• Faster timer interruption can be treated. 
• Application programs can be independent of a 

particular hardware. 

We introduced LynxOS and HP-RT and wrote 
LynxOS device drivers for some l/0 boards. We will 
write HP-RT device drivers in the near future. 

II. FEATURES OF THE REAL TIME OS 

A. LynxOS 

LynxOS is a product of Lynx Real Time Systems Inc. 
and is one of the real time OS called "real time UNIX". 
It provides us with a superior environment for software 
development of UNIX such as GUI (Graphical User 
Interface) based on X window system, standard network 
system based on Ethernet and TCP /IP, and so on. 
Furthermore, it provides us with real time functions 
such as preemption and priority-based task scheduling 
which UNIX dose not have. 

LynxOS is developed with emphasis on 
standardization and open system. It is binary level 
compatible with UNIX System V R.3 and Source level 
compatible with UNIX 4.3 BSD. As for the shell, in 
version 2.1 it supports bash, csh and improved sh shells 
as well as dlsh shell. Dlsh is its original shell. 

LynxOS also complies with POSIX 1003.1 ,1003.4 
and 1003.4a. POSIX 1003.1 is a main part of POSIX. It 
defines interface with application programs. POSIX 
1003.4 and 1003.4al are extensions for real time feature 
and define interface with real time application 
programs. Therefore users' programs on LynxOS are 
portable to other OS's which are compliant with 
POSIX1003.1 and 1003.4. 

LynxOS supports many platforms such as 
i80386/486, M68030/40, i860, M88K, SPARC and R3000. 
The kernel is about 190KB. It is ROMable and can be 
used as an embedded system. 

B.HP-RT 

HP-RT, a product of Hewlett Packard Co., is based 
on LynxOS. Its kernel is modified and tuned for PA­
RISC. The main difference of it from LynxOS is the 
development environment. LynxOS provides us with a 

lThe POSIX 1003.4 and 4a are currently drafts. 

-79-



self-development environment, while HP-RT provides 
a cross-development environment. Loading software 
from host system to target system requires much labor of 
developers. When application programs are 
developed, HP-RT must be accompanied by a particular 
host system, HP9000 series 700 or 800. Although larger 
initial cost is required, HP-UX provides us with 
superior development supporting tools such as 
SoftBench. 

ill. DEVICE DRIVER DEVELOPMENT 

Device drivers are embedded in the OS kernel and 
glue the kernel to devices such as VME I/0 boards. 
Device drivers convert the commands from the kernel 
into those the devices can understand, and vice versa. 
A device driver is a collection of function routines 
called "entry points" only through which the kernel 
can access the driver. 

A. Feature of the LynxOS device driver 

A device driver contains eight entry points. The 
names of entry points and their purposes are shown in 
Table.l. Writing a device driver is to describe how 
each entry point should react when the entry point is 
accessed from the kernel. 

Table 1. LynxOS device driver entry points and its 
purpose. 

Entry Point 

open 
close 
read 
write 
select 
ioctl 
install 
uninstall 

Purpose 

called when device is opened 
called when device is closed 
called to read data 
called to write data 
support select system call 
device control 
called to install major device 
called to remove major device 

Many special library functions with C interface are 
provided for writing device drivers. They are called 
the "driver service calls". These functions support 
dynamic memory allocation, 1 msec and 10 msec timer 
interrupt, hardware interrupt dispatches, software 
interrupt, thread, semaphore, signal, DMA chain,etc. 
Device drivers can be written in C language. 

B. Development Environment 

Device drivers are embedded in the kernel. We 
have to modify the configuration table file and reboot 
the system to remake the kernel when a new device 
driver are added. This process is called "static 
loading" of the device driver. Static loading requires 
much labor during the development. Therefore 
powerful and useful functions called "dynamic loading" 
are provided for developers. Device drivers can be 
linked or unlinked to the kernel with some commands 
from shelL AU things we need to do are merely to 
declare the entry points in the form of specific structure 
in the device driver. Neither to modify the 
configuration file nor to reboot the system are required. 
There are no performance penalty. When the 
development is finished, the device drivers may be 
loaded statically. 

Debugging tools for the development of device 
drivers are poor. Before version 2.1, only the way to 
debug device drivers is to print the information on 
console with cprintf or kprintf functions . In version 2.1, 
skdb(Simple Kernel level Debugger) debugger is 
provided. We will test it though it seems that it dose 
not have sufficient power. 

C. Hardware Interruption 

We have implemented hardware interrupts from 
1/0 boards with the device drivers. All things we 
have to do in the device driver are to describe an 
"interrupt software handler" and to establish a 
relation between the header address of "interrupt 
software handler" and interrupt vector number which 
is sent to CPU from the I/0 device which demands an 
interruption. The latter is implemented with a driver 
service call related to the hardware interrupt 
dispatches in the install entry point. This service call 
has an interrupt vector number and address of an 
"interrupt software handler" as arguments. It is very 
easy to implement a hardware interrupt with this 
service call. 

D. Some tests with developed device driver 

We have developed LynxOS device drivers for 
three types of VME boards. They are DO, DI (with no 
hardware interruption) and AI (with hardware 
interruption). Generally speaking, since an AI board 
has more functions than DilDO boards, making a 
device driver for an AI board is more complex. We 
developed a simple device driver for the AI board 
which supported the least functions we need. All 
developed device drivers work well, and support all 
functions we need. 

We examined the processing time for analog data 
acquisition with the developed device driver. The 
conditions of these tests are using the AI board with 

-80-



12bit ADC, 30 J..Lsec sampling rate, taking 64 samples 
per one read cycle and acquiring data from a fixed 
channel. 

The processing time were measured with 
gettimeofday system call which provides the current 
system time with the resolution of 10 msec. As the 
processing time to be measured is actually less than 10 
msec, we measured the average processing time 
repeated 1000 or 10000 cycles. 

a) comparison between device access ways 

We compared two different device access ways, by 
using shared memory and by using a device driver. 
Both data acquisition modes were set to the polling 
mode In the polling mode, a flag which is set when 64 
samplings are finished is always polled. One data 
acquisition cycle by using shared memory included 
getting shared memory, setting the device operation, 
reading the data and releasing shared memory. One 
data acquisition cycle with a device driver included 
opening the device, setting the device operation, 
reading the data and closing the device. 

It took about 2.5 msec by using shared memory per 
one data acquisition cycle and about 16.5 msec by using a 
device driver. In the case of using device driver, the 
overhead time for opening and closing device are very 
large. The processing time required for setting and 
reading is about 2.5 msec. It is as fast as the processing 
time by using shared memory. 

b) comparison between data acquisition modes 

We compared two data acquisition modes, the 
polling mode and the hardware interrupt mode. The 
polling mode is described in a). In the hardware 
interrupt mode, an interrupt occurs when 64 samplings 
are finished. 

It took about 16.5 msec in the polling mode and 
about 17 msec in the hardware interrupt mode per one 
data acquisition cycle. It seems that there is a little 
overhead time to process the hardware interrupt. 

We compared the influence on the other process 
between data acquisition modes by polling mode and 
hardware interrupt mode. A data acquisition process 
and another process, looping process, were run at the 
same time. The data acquisition processes are the same 
ones as above. 

The result is shown in Table.2. The time of data 
acquisition process includes the time of opening the 
device, 10000 cycles of setting the board and reading 
the data, and closing the device. It shows that data 
acquisition in polling mode influences largely looping 
process. 

Table 2. The processing time of the data acquisition 
process and the loop process when they run at the 
same time. The numbers in the parenthesis are 
processing times when they run alone. 

data acquisition data acquisition looping process 
mode process 

polling 47.8 sec (24.8 sec) 45.8 sec (23.0 sec) 

H/W interrupt 53.0 sec (30.0 sec) 23.0 sec (23.0 sec) 

IV. SUMMARY 

We wrote and examined the LynxOS device 
drivers. We also intend to write those of HP-RT and 
test their compatibility with LynxOS. 

V. REFERENCES 

[1] T. Wada: "Design of the Control System for the 
SPring-8", RIKEN Accel.,Prog. Rep., 24, 202 (1990). 

(2] T. W ada, T .Kumahara,H. Y onehara,H.Y oshikawa, 
T.Masuda, and Wang Zhen: "Design of SPring-8 
Control System", Proceedings of the International 
Conference on Accelerator and Large Experimental 
Physics Control Systems, KEK, Tsukuba, Japan, 
November, 1991, pp. 151-153 

[3] T.Masuda, T.Nakamura, T.Wada and Z.Wang: 
"The Real Time Operating System of Front-End 
Processors for the SPring-8", RIKEN Accel.,Prog. 
Rep., 25, 240 (1991). 

-81-


