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Abstract 

New equations of motion for alternating phase focused (APF) 
structures are proposed. Formulas to evaluate the acceptances and 
current limits, which can be applied to any type of APF structures, are 
derived from the equations of motion. Coupled motion in an APF is also 
discussed in this paper. 

Introduction 

The APF accelerating method was first discovered about forty years 
ago and has been developed mainly by Russian researchers. There exist 
basically three types of APF structures, i.e. symmetric APF (SAPF), 
asymmetric APF (SAPF) and modified APF (MAPF) 1 l. To study single 
particle motion in APF linacs, the two wave approximation (TWA) 
method was proposed2). The TWA is besed on travelling wave approach 
and is applicable to any type of APF structures. However, in the 
equations derived from the TWA method, synchronous phase alternation 
patterns cannot be explicitly introduced. The equations presented in 
this paper are obtained by using the stepping field approximation based 
on standing wave approach3l, and we can see explicitly the synchronous 
phase at each gap. Therefore, the present theory is more suitable for 
considering directly the various types of APF phase sequences and 
other design parameters at the gaps. In this paper, starting with the 
new equations of motion, we derive the formulas to estimate the 
acceptances and current carrying capacity of APF linacs. The effect of 
synchro-betatron coupling is also described. 

Single particle equations of motion 

Considering an axisymmetric drift tube structure whose periodic 
length is LN, we can obtain, from the Maxwell's equations, the 
electromagnetic fields 

E,(z, r, t)= IA.I,(k.r)cos(2 L=)cos mt 
rt. •0 N 

(Ia) 

~ 2m<A. (2nnz) E,( z, r, t) = .._.~I1 (k.r)sin -L-- cos rut 
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B,( z, r, t) =- I A.m l 1 (k.r)cos ( 2 !:"")sin rut 
•.• k.e N 

(I c) 

where In (X) is the modified Bessel function of the n-th kind, and 

kn2=(2nn..) 2[(n:VLNJ2-1]. Here, an even-n mode DTL has been assumed to 
make the following discussion simpler. Using Eqs.(1) and averaging the 
Lorentz force over single structure period LN=N~t... the transverse 
equation of motion is given by 

dp, eqVf 
--=---I (><X) sin if! 
d~ cfJr 1 

(2) 

where $, q, V and T are, respectively, the synchronous phase, charge 
state of ion, the intergap voltage and transit-time factor at a gap, and 
K=21tl~-y1... The new independent parameter < is defined as <=~ct/LN. 
Applying the stepping field approximation presented in Ref.3, Eq.(2) can 
be rewritten for an APF structure as 

where 

A.(~)= 1+2 Is., cos (2mr(<- ~.Jl 

and 

sin ( mrg• I Lnl 
S_. = ---:n::-:n::-:g~.-/'L,-n-

In the above expression, the symbols with subscript k represent the 
values of the k-th cell in a focusing period, and g and 'l are, respectively, 
the gap length and accelerating mode number. Since the momentum px Is 
related to the transverse coordinate as 

(4) 

we have from Eqs.(3) and (4) 

where A=MqLNim 0c 2 ~ 3 -y3 t.. and t.$ is the phase difference between 
synchronous and non-synchronous particles. 
In similar way, we can obtain the longitudinal equation of motion as 

i(<l¢) • 
-r+2A Iv,T,A,(<)(l,(.x)cos(<l¢+¢, )-cos¢, I =0. (6) 

k-1 

Also for an odd-n mode DTL, we can obtain the same equations of motion. 

Acceptances 

When only the linear force terms in Eqs.(5) and (6) are taken into 
consideration, we have 

(7 a) 

(7 b) 

where 

K,(<)=B+ IC.sin(2m«+D.l 

with 

and 

c.= 2 rr i <1, s .. sin (2 ""'• )J + [ i <1, s .. cos (2 nn, )J} 
1/' 

~Jr .. l k•l 

Neglecting the Cn(n>1)-terms in Ks(<), the particle motion governed by 
Eqs.(7) has the stable region as shown in Fig.1. 
Supposing the form of the solution of Eq.(7a) as 

we obtain 

X(<)=~ COS(0" 00 <+0) 

l L n I 1 - c. J 
fJ,(r) = ~l+ U -~1,--;;rsln (2nn<+ q>'.l 

, 1 ~(C.) a =B+--.._.­
ol 8 n2 " .. 1 n 

by using the smooth approximation. 

(8 a) 

(8 b) 

When the bore radius of the drift tube is rb, the transverse normalized 
acceptance is represented as 

5 

---
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Fig.1. Stability region of accelerating particles in an APF linac 
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(g) 

where !Ptlmax is the maximum value of the betatron function evaluated 
from Eq.(Sa). 
We can also get from Eq.(7b) the smoothed longitudinal phase advance at 
zero current as 

• I ~(c·J· a"' =- 2 B + --2 L n 
2n ,. .. 1 

(10) 

By using the averaging method3), the longitudinal potential function is 
approximately given by 

L )' - • • N u" + u,. 
+ -- L; ----+ const. 

2 n{Jc "ool n2 
(II) 

where 

{ u } 2 eq " [ • •] {sin (2 nn<, )} 
u: = -r-;; .~, V, T, S .. cos ( tJ ¢ + ¢, ) -cos ¢, x cos (2 nn< ,) · 

We can evaluate graphically the APF longitudinal acceptance from the 
width and the depth of the above effective potential well. Table.1 shows 
the acceptances of some phase sequences. The simulation results are 
obtained by Swenson4 l for 2J<-mode operation. The agreement between 
the theoretically obtained results and the simulation results are quite 
good. 

Space charge limit 

In this section, we derive the current limit formulas by following the 
Wangler's method described in Ref.S, where a 30 ellipsoid having a 
uniform chage distribution is assumed. Introducing a space chage force 
term into Eq.(?a), we have . 

~+[a+"·+ c, sin(2n<+ o,J]=O (12) dl 
where . 

3Z,eqr:tL, (I-j(p)( 

"· =-
8 nm 0 r!' r 2 bt/ r' 

l=beam current, Zo=376.73n, r and b are the radius and longitudinal 
semi-aperture of the assumed ellipsoid respectively, and f(p) with 
P=bir is the ellipsoid form factor3l. Applying the Wangler's approach to 
Eq.(12), the transverse current limit formula is given by 

(13) 

where flt is the transverse space charge parameter, 

. 
< r > 

I-C/47?' • 
' r 

I+C,/4n2 • 

and 

Similarly, we obtain the longitudinal current limit as 

(14) 

As an example, let us put A.=10m, N=2, rb=4mm, the charge-to-mass 
ratio=1i20, and flt=flt=0.84. In this case, the current limit is about 2mA. 

Coupled motion6l 

Taking the second order coupling terms in Eqs.(S) and (6) into 
consideration, we o\ltain 

(I5 a) 

(15 b) 

where 

K,( <) = B' + L;c'. sin (2 nn< + o'.J . 

Here, B' and Cn' are given by replacing Akin Band Cn by Ak'=AVkTkcosh•· 
Assuming that 

x= z·{l+ q,J and 

Eqs.(15) are smoothed to give 

where 

l. d z • • 
---;t:?"+a, z=-a. Z'P . 
dtp 2 2:al:a:a:a 
~+ O'oa tp= a,. 'P -2K at' X 

a 2 = li -_I ~(.s.J'JB ' -_I ~ .s.s_ "' -t..L..t :a :aL :a 16n ""'I n Bn n-1 n 

• [ 1 - (c·J'] 1 - c.c·. a, = I+-::--; L ---, B'- ::-. L---r-
8 1t "'"' n 2 n n -I n 

• [ I ~( c ·J'] , 1 ~ c. c'. at: = 1 + --; L.t ---; B + --2 ,t.., --2-. 

32n n•l n 4n 1\•l n 

(16a) 

(16 b) 

N Phase sequence ( deg) E0 T 
(MVjm) 

Normalized Total phase 
transverse acceptance 
acceptance A</>,"(deg) 
A, (em mrad) 2 

-60,60 -14.0 3.23 3.14 70 62 
-65, 55 -14.0 2.58 2.47 86 76 
-70,70 -12.0 2.93 2.92 74 76 
-90,30,30 -8.0 1.83 1.93 58 52 
-90,40,40 -10.3 3.60 3.54 52 50 

4 -90, 0, 90,0 -7.0 1.71 1.82 60 53 
4 -60, - 60, 60, 60 -4.5 1.45 1.57 50 50 
4 - 70, - 70, 60, 60 -4.5 1.38 1.23 70 73 
5 - 90, - 30, 60, 60, - 30 -3.5 0.72 0.75 60 60 
5 - 90, - 90, 30, 90, 30 -3.0 1.18 1.23 70 73 
6 - 90, - 90, 0, 60, 60, 0 -2.8 0.84 0.85 65 76 
6 - 90, - 90, 0, 70, 70, 0 -2.7 0.96 1.06 70 71 

- 90, - 90, 0, 90, 90, 0 -2.6 1.13 1.19 60 70 
- 90, - 90, 0, 40, 70, 40, 0 - 2.4 1.11 1.25 45 49 
- 90, - 90, - 30, 30, 60, 60, 30, - 30 -1.8 0.62 0.76 62 65 
- 90, - 90, - 30, 30, 90, 90, 30, - 30 -1.8 0.81 0.98 70 64 

Table.1. The normalized transverse acceptances and the total phase acceptances of proton APF lii1ac, whose operating frequency and the beam energy 
are 400MHz and 1MeV respectively, are shown in this table. Each transverse acceptance is evaluated in the case where the linac bore radius is tern. 
Eo is the averaged accelerating field used in the theoretical calculation and defined as Eo=VipA. here. The values in columns 1 and 2 correspond to the 
simulation results presented in Ref.4 and the theoretically obtained results respectively. 
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It is easy to show that the coupling terms in Eqs.(16) yield a resonance 
given by the condition 

2 O'o 1- O'ol = 0 • 

This condition is equivalent to B=O and, accordingly, symmetric phase 
sequence must be avoided to eliminate the lowest order resonance. 
Some straightforward algebra lead to. the unstable width around this 
resonance as 

where <p 1 is approximately equal to the half-width of the longitudinal 
phase acceptance evaluated from the effective potential Eq.(11 ). 
Therefore, noting the fact that <r01 is usually taken larger than 2<>ot to 
make the longitudinal acceptance as large as possible, the following 
condition must be satisfied: 

(17) 

Adiabatic damping law 

In this section, we put -y~1 because an APF structure is suitable for the 
low-!> region, and the 2lt·mode acceleration where LN=Nj):>.. is considered 
here. The Hamiltonian for the longitudinal motion is written as 

tcLN :a 
H=---,-,(dW) + U(d;} 

m0 c {J 

where ll W is the energy difference between synchronous and non­
synchronous particles. 
Assuming ll+«1 and U=U811 , the above Hamiltonian is reduced 
approximately to 

ltN • m, r! p" • 
H =- ---. (dW) - ---2-A(d¢) 

· m,c"{J 4.?'N 
(18) 

where 

For the motion on the stability region shown In Fig.1, A>O. Using Eq.(18), 

Let us indicate each paramete(s value at the entrance and at the exit of 
an accelerator with the subscripts 'In' and 'out' respectively. From the 
Liouville's theorem, ll+tn6Wtn•ll+outllW0 ut. Therefore, we obtain 

,,, 
d#.,. = fJ,.( ~) 
d#,. P:\.A.,. 
dW.,. fJ..,( A.,.) 
dW,. = M A;:-

1/4 

( 19 al 

(19 b) 

Because Eqs.(19) are based on Eq.(6) in which the change of 1> through a 
focusing period is supposed to be neglected, we must note that Eqs.(19) 
may lead to invalid results as the value of N or the energy gain at a gap 

If we take a same phase sequence throughout an APF structure, the 
longitudinal acceptance becomes smaller with increasing beam energy, 
so, in a usual APF design, the focusing period number N is taken larger in 
higher-!> region while the transverse acceptance becomes smaller. 
Therefore, the bore radius rb should be made gradually larger toward 
the high energy end to compensate the transverse acceptance decrease 
due to the N-va!ue change, so that the r.h.s. of Eq.(20) is kept almost 
constant for constant A1• Then, we must choose the desired value of the 
longitudinal phase acceptance ll+acc· The B- and C1-dependence in 
Eq.(11) is not obvious, so we cannot have such a clear formula as Eq.(20). 
However, according to a numerical calculation, ll+acc has a specific value 
corresponding to the values of B and c1, and we can obtain a phase 
acceptance contour as shown in Fig.2. Therefore, when we select a value 
of ll+acc, we can determine the parameters B and C1 from the 
intersecting point of the contour and the curve obtained by Eq.(20). The 
representations of B and C1 have already been given as 

1 
B • 
-= L P• (2la) 

(~~i~[ L P. s,. sin (2 n.>J +[ L P• s,. cos (2 "'•)J (21 b) 
k ·l k •1 

where Pk=VkTksln+k· 
If N=2, we can determine uniquely a phase sequence corresponding to 
the specific values of B and c1 by using Eqs.(21), noting the condition 
given by Eq.(17). In the case where N>2, we can also obtain a sequence 
with the additional consideration of maximum energy gain. 
Furthermore, when the beam current is large, the equipartitioning and 
matching conditions, i.e. 

61 uc < b > e;-=o;-=<r> 

with 
a < r >2 a 1 < b>" 

• - -·--- and • =----1 LN I LN . 

should also be considered for minimum emittance growth. 
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Determination of APF operating point 

Let us consider a method to determine an APF operating point on the 
stability diagram. Since rf-frequency, intervane voltage, initial beam 
energy and the other fundamental parameters except for the phase 
sequence are chosen first, we can calculate the transverse acceptance 
A1 accordingly by using Eq.(9). In this case, we have the following 
relation between B and c1: · 

,,. 
LNA 1 (B+~) --.-a 
fJ't". 

(20) 

4 

3 
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B 
Fig.2. Phase acceptance contour example. These contours correspond to 
the N=2 APF llnac for protons whose operating frequency, beam energy 
and averaged field amplitude are 400MHz, 100keV and 10MV/m 
respectively. 
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