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Abstract 

Space charge effects of lD waterbag-type beams under constant linear focusing 
force is studied. A self-consistent stationary distribution is obtained in the form of 
power series, and the linearized Vlasov analysis is applied to investigate the stability 
of beam plasma oscillation modes. 

Summary 

Space charge effect is an important subject for accelerator dynamics and beam 
transport designs and has been studied by many researchers in various ways. In the 
present paper, we investigate the stability of space-charge-induced plasma oscillation 
modes by using the linearized Vlasov approach. We treat here lD beams travelling 
in uniform focusing channel, and the particle distribution is assumed to be the 
waterbag-type. 

In the following sections, we first try to obtain the stationary distribution in the 
waterbag model. After that, the usual linearized Vlasov equation is solved together 
with the Poisson's equation, resulting in an eigen-value problem, i.e. Eq.(25) or 
Eq.(31), which determines the frequencies of the beam plasma oscillation modes. 
These two eigen-value equations are obtained with the different approximations for 
the stationary state Hamiltonian. In both cases, the eigen-values are always real, which 
means that there exists no instability in lD waterbag-type beams. 

The Vlasov-Poisson equation system 

lD beam motion under linear external focusing force with space charge field 
E(x;s) is governed by the equation 

' ( )' d X QJO q 
--+ - x----E( x; s) =0 

ds ' u ' m 0 u 
(1) 

where u is the beam velocity along the orbit, roo corresponds to the betatron tune at 

zero current and the independent parameter s=ut. Here, for simplicity, we put the 
relativistic parameter y-1 because space charge effects are dominant in low-energy 
region. Eq.(l) can. be derived from the Hamiltonian 

' 1 ' 1(m•) , q H=-p +-- x +---V(x· s) 2 .1{ 2 u 2 I m 0 u 

where the space charge potential V(x;s) satisfies the Poisson's equation 

a'v(x;s) 

ax' 
aE(x; s) =- .:!_ n( x; s). 

ax Eo 

In Eq.(3), the particle number density n(x;s) is given by 

n(x; s) = J j( x, p.; s) dp. 

and the distribution function f(x,px;s) satisfies the Vlasov equation 

a] 
as + { H' j} = 0. 

(2) 

(3) 

(4) 

(5) 

Eqs.(l)-(5) are closed, and space charge problems arc completely described by 
solving these equations in a self-consistent way. Following the usual procedure to 
solve the Vlasov-Poisson equation system, we separate V(x;s) and f(x.p,x;s) into two 
parts, the stationary part and perturbing part, i.e. 

{
V(x; s)= V(x)+ SV(x;s) 

f(x, P.; s)
0
=f,(x, P.l + lij( x, P.; s). 

Accroding to eq.(6.b), we have for the number density 

n(x; s) = n 0 ( x) +lin( x; s). 

( 6 a) 

(6 b) 

(6 c) 

Substituting Eq.(2) together with Eq.(6) into Eq.(S) and neglecting the second order 
perturbing term, we obtain the linearized equations as follows: 

ilf. ~(Q)·)' q ] ilf. P.-- - x---E (x) --=0 ax u mou1 0 dp./{ 
(7 a) 

and 

J![_+ ~-~(!:!.::..)' x--q-E (x)~!if a P. ax u ' • o... s m 0 u VJJ x 

q ilf. =---, liE(x;s)- (7b) 
m. u ap. 

where we have put E(x;s)=E0(x;s)+oE(x;s). 

Stationary space charge potential 

To apply the linearized Vlasov approach to the closed equation system given in t.he 
previous section, the first issue is to get the stationary state distribution function 
f0(x,p.x;s). Neglecting the perturbing parts, the stationary state is described by the 

Hamiltonian 

' 1 ' 1 (QJ·) ' q H0 =2p• +2u x+---,V0 (x), 
m 0 u 

(8) 

and it is obvious that any function of H0 is a solution of Eq.(7a), i.e. fo(x,p,)=fo(Ho)· 
Accrdingly, we have from Eq.(3) 

2 l 2 l 

d v. q I P. "• X q =-- J.(--+--+ --V)dp 
~ eo 0 2 2 m 0 d 0 ""' 

(9) 

where "o=ro0/u. 
The stationary state potential is obtained by solving Eq.(9) while the form of the 
function fa depends on our choice. In the stationary state, the potential Yo(x) should 

be an even function with respect to x, and the constant term can be neglected. Then, 
we can assume the form of Vo(x) as 

'l ' - J mo u K"o 2 2" 
V(x)=----x- I,w x 

0 q 2 "=I " 

(10) 

Substitution of Eq.(lO) into Eq.(9) leads to 

( 11) 

where the number density is given by 

- lll Px 2 -

n (x)= "v x =fJ.(--+ I,w"x'")dp. 
0 .i..J " 0 2 

":0 "=I 

( 12) 

Dy comparing the coefficients of the same order powers in Eq.(ll) together with 
Eq.(l2), we obtain 

(for n=O) (13.~ 

(for n,o 0) (13. b) 

where we have defined the plasma frequency as rop 2=q2vo/Eomo, and l),=ffip/u. 
Now, we introduce the waterbag distribution defined by 

N E..., p • - ' [ { ' J~ ] 0 (H0 )=zc1+sg - 2---2-- "~'w"x (14) 

where N and C are, respectively, the total particle number and normalization constant 
given by 

and Ewn is a constant closely related to the beam emittance. 

From Eqs.(l2) and (14), we have 

(15) 
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}:v.x .. = 2N~[1- L(2 n- 3 ~ 11 (Lwnx•n)") 
n•O n•l nl EMJ n•l 

and, therefore, 

2N-.JE,:; 

c 

Using the above equations and Eqs.(13), the coefficients Wn can be evaluated as 

follows: . 
"· w =--

1 2 
1 • 

w, = 24'E( .:,.:,) ... 

where r:/=r:o2·K/. 
Then, the stationary state Hamiltonian is 

1 • 1 •• (.:,.:.,>'[x' 1( • .::Jx• 
H.= 2p· + 2"· X+ 24 E+lO "· +3 --. 

"" E.,. 

( ') ] 3 • 6 • • "' x' +-- 1( +-.: 1( +-- ---+···. 
112 ' 15 ' ' 45 E .. 3 

(16) 

Note that the stationary state includes the infinite chain of the non·lincar tenns. For 
low-intensity beams, tho higher order powers in Eq.(l6) i& small and the linoar-foreo 
term is dominant. In the case of intense beams, the higher order tenns make 
dominant contribution to the stationary state, and this indicates that the stationary 
distribution in real space becomes more and more uniform with increasing beam 
intensity. It is known as the homogenization effect. The external potential is canceled 
by the quadratic tenn in the space charge potential and, as a result, panicles near the 
beam axis is almost in force-free stalel). 

Stability of beam plasma oscillations 

In this section, we consider 

1 2 1 2 2 

H.-+ H, = 2 p. + 2 "· X • (17) 

as the stationary stale Hamilotian 
To achieve the self-consistent stability analysis, we must, of course, start with the 
Hamiltonian Eq.(l6). But it is hopeless to solve analytically, so lot us take 
mathematical simplicity rather than the perfect self-consistency. This simplification is 
physically valid, at least, for low-intensity beams, and it would be usefull to investigate 
the dynamical beam behavior. In this c~sc, the perturbing Hamiltonian is 

q 
H = H 1 + --• .W(x: s), 

m 0 u 

and tho Poi&son's equation is given by 

2 a 6V( x: s) 

ax• 
a.sE(x:s) qf 

--:iJ.,-><_.:...=- E,;" 6j( x, P,; s) dp,. 

(18) 

(19) 

When we write the beam emittance as e1, the stationary distribution function becomes 

f. (I ) = _!Ll1 + sg{5_ - I )J 
0 I 21tEI 2 . I 

(20) 

where we have introduced tho action-anglo variables (!1,91) defined by 

and P, =-~sin 61 • 

The lineanied Vlasov equation (7b) is rewritten with the action-angle variables as 

Now, we expand Of into Fourier series as 

dfo(I 1) 

I 1: s)sln 9 1~-

/if(6 1 , I 1 : s) = exp (- !.:s) L lf.,( I 1)exp ( in6 1). 

(21) 

Substituting this and Eq.(20) into Eq.(21) and integrating with respect to 91, we obtain 

x (' 6E( 91 , I,= e1 I 2) sin 61 exp (- in9 1) d61 (22) 
0 

where o(z) is the Dirac's delta function and 

6E(9 1, I 1 ; s) = cSE( 91 , I 1)exp (- !.:s). 

Eq.(22) indicates that we can put 

.sr ( I ) = r . .s(.i - I ) a" 1 J,. 2 1 

which means that the perturbation occurs only at the beam edge. 
Noting that the solution of Eq.(l9) is given by 

(23) 

q - r:: .. 
DE = -- L J J sgn(..Jl: cos 91 - V I', cos 11'1) lf. ( 1'1) e" ·do', d(, , 

2£0 "·--

Eq.(22) ean be rewritten as 

(24) 

with the use of Eq.(~3). Hero, Fnm can be evaluated as 

Accordingly, Eq.(24) becomes 

(25) 

0.6 ... 1.0 

I 0 Zero-eum:nl phase advance -- --·---·--·-· 

==::,:."'~";'§§~E~~f;;~:~~~~~~~~~~~~~;;;;== 
1C 0 ----------------------·-----------

• 5 ===~:=::::::.,.;;;~~§~;~~~~~~~~~g~~~~~==~ 

···~-------.--------r--------r--------r----------=··-~·-·~··· 
0.2 0.0 1.0 

Fig.l Eigen-tunes vs. tune depression K•/Ko in the linear-force approximation 
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where the matrix element is given by 

and Onm is the Kronecker's delta. 

Eq.(25) is an eigen-value equation to determine the frequencies of the beam plasma 
oscillation modes. Fig.l shows the real part of the eigen-tune lC evaluated from 
Eq.(25) in the case where the first five modes are taken into consideration. The 
eigen-tune K is always real, and this means that there exists no instability. 

A non-linear force approximation 

As previously mentioned, the non-linear terms in the stationary potential become 
more dominant in higher intensity beams. Therefore, in this section, let us 
investigate the stationary state described by the Hamiltonian 

(26) 

While, to achieve higher self-consistency in the stability analysis for intense beams, 
we must take some non-linear-force terms simultaneously into consideration, the 
simple cubic-force approximation may be suitable for our purpose because it allows 
us fully analytical description of the dynamical beam behavior. Additionally, we can 
investigate whether the non-linearity of the stationary potential will cause some 
essential change in the results, compared with those obtained from the linear 
approximation. In this approximation, the new emittance E2 can be defined as 

where 

1 .h E E 116 

c:, ~ 1f r P. ( x; H, ~ --?-) dx ~ ----:..---1JVK:.K, 
3 ,, 

'7 ~ 3 " = 0. 483 • 
8 · K(1 /Vz) 

and K(k) is the complete elliptic integral of the first kind: 

• I 2 

K( k) ~ f 
0 

d9 

V 1- k 2 sin 2 9 

From Eqs.(26) and (27), the total Hamiltonian cousidered here is given by 

where 

q 
H ~ H, + --. oV( x; s) 

m 0 u 

' X. 

Introducing the action-variable defined by 

H2 is rewritten as 

and the action-variable is derived from the Hamiltonian equation of motion, i.e. 

27/3 'ly-;:;:;(I·)"' 
3 ~ • k,(I,). 

Using these canonical variables, the stationary watcrbag distribution is given by 

g (I)~ ___!:!.__ll + sg-( 2- I )J 
0 2 2 7<£ '\ 2 2 

2 

(27) 

(28) 

Applying the same technique as presented in the previous section to the Hamiltonian 
(28) together with the total distribution function g(I2,9 2;s)~go(l2)+1ig(lz,9z;s), we 
obtain1) 

q 3N 
2m(>e-n>e,)g.~ 1 

mou2 n~(K:. K,)l ... 

2• E _.,, 
x f oE( 92 , I 2 ~ fl · DN(dl 2 ) SN(dl 2 ) e 'd8, (29. q 

0 

8E(8 I=s_J~_!!__ ~g fsgn(CN(cB)-CN(cB'))e"'··de'(29.b) 
2' 2 2 2£ .i.J n 1 1 1 

0 n ,_ .. 

where SN(x), CN(x) and DN(x) are the Jacobian elliptic functions, 

E~ 4TJ y-;:;c; 
>e,~ k,(I,~2) ~ 3 :0.64y-;:;;. 

2 KO rv'2J 
rr~ 

.,, 
3 

- "'4i] = 1. 18, 

and we have put 

1
8g(8 2 , I 2 ; s) ~ s(;- I,)exp (- U<s) •~- [/. ·exp( in8,) 

8E(92 , I2 ;s)~oE(8 2 ,I2 )exp(- t>es) 

Eqs.(29) lead to 

where the matrix element Gnm can be evaluated as 

G.m ~- !Vz (' d92 • DN( dl 2 ) SN( dl2 ) e_,, 
0 

(30) 

x (' d9'2 • sgn( CN(o$ 2 )- CN(cB',)) ~m•'. 
0 

4096 Vs 1)2 ~ (2 k+ 1) 2 n 
.L,l • '1 ' 'j·A. 9 •·o (m+ n) - (2k+ 1) (m- n) - (2k+ 1) 

and An=e·(n+0.5)n/[l+e·(2n+l)n]. 

Thus, from Eq.(30), we have 

where 

0 

, for m + n = even 
, for m + n ~ odd 

(31) 

The eigen-tunes evaluated from Eq.(31) are, again, always real- at any value of the 
tune depression Ks/K0(see Fig.2). 
Eqs.(25) and (31) are very similar to each other, and there is no essential change. In 
fact, the both equations have only the real eigen-values. While the cubic-force 
approximation introduced here is rather crude, it is expected that ID waterbag-type 
beams arc essentially stable even in the more self-consistent analysis. 
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Fig.2 Eigen-tunes vs. tune depression KiKa in the cubic-force approximation 
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