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Abstract 

It is shown that the longitudinal electric field of a transverse mag
netic mode of a Gaussian laser beam accelerates an electron to an 
ultrarelativistic energy. The electron is captured and accelerated 
in a length of the order of the Rayleigh range. The ultimate en
ergy increment of the electron with a single laser beam is given by 
the product of transverse field intensity and the beam waist, and 
can be of the order of 100Me V. This fact implies that a multi
stage acceleration enables Te V-order-acceleration in a length of a 
few kilometers with the art. 

1 Introduction 

The energy density of a laser pulse is usually much greater than 
that of microwave, and hence many ideas for using powerful lasers 
to accelerate electrons have been published.I-3 Since, however, 
the laser beam is essentially a transverse electromagnetic wave, 
directions of acceleration in those schemes are transverse and this 
gives rise to complexity of configurations. 

It has been noticed, on the other hand, that the Gaussian beam 
has a longitudinal field component E.(x, y, z). 4 Since Ez is con
nected with the transverse field component E 1( x, y, z) throught 
'il · E = 0, Ez is formally given by 

(1) 

where 'il 1 stands for the transverse part of the divergence operator 
'il. 

Cicchiteilli et. at.5 ascribed to this field the high energy elec
tron ejection from laser irradiated materials and Sculty6 gave a 
qualitative discussion on the possibility of using this field for ac
celerating electrons based on the concept of the linear accelera
tor. On the other hand, Shimoda7 gave an elementary methode 
for calculating field components of a laser beam with finite width 
and explicitly acquired the longitudinal field. Accordingly we ex
pected an electron acceleration with this longitudinal field and 
obtained a concrete expression of electron energy gain. We also 
found that the acceleration mechanism is relevant to the beat 
wave accelerator8 rather than to the linear accelerator because of 
the presence of a phase slippage. 

2 Gaussian beam 

We start with reviewing the methode of Re£.7 and obtaining the 
required longitudinal field component. Suppose that a TM wave 
whose frequensy w and wave number k is propagating in the z
direction in free space with the fields, 

(Ex, By, Bz) = [f(x, y, z), g(x, y, z), O]exp( iwt- ikz). (2) 

It is shown that f and g satisfy the following Helmholtz equation, 

a2u a2u au 
ax2 + ay2 - 2ik az = 0, (3) 

under the paraxial approximation la2ulaz2 1 « l2ka·ulazl where 
u stands for for g. The Gaussian-type solution is written in the 
form9 , 

U = : 0 Hm ( v'2~;) Hn ( v'2!;;) exp(ii!>m,n)exp (- :: - i;~2 ), 
(4) 

where r 2 = x 2 + y2 , il>m,n = (m + n + 1) tan-1 (zl£0 ), p-l = 

1lw2(z) + iki2R(z), w(z) = w0 J1 + z21£5, R(z) = z + £5/z, 
fo = 1rw5/ A, and H m and Hn are the Hermite polynomia.ls. The 
fo is the Rayleigh range, w0 is the beam radius at the waist and 
other notations are standard. 

We choose f = Umn and then have g = - J ( aumnl ax )dy' using 
the relation a f I ax + ag I ay = 0 from 'il . B = 0. The best mode 
for electron acceleration is the one with m = 0 and n = 1 or vice 
versa. We understand this from the following argument. The Ez 
is easily obtained to be 

2Aw ( r2) ( r2) Ez = -i kw2° 1- F exp(iwt- ikz + ii!>0 ,1 )exp -F (5) 

where we introduced an amplitude A which relates to the 
maximum amplitude of the transverse electric field given by 
the relation A = .J2e"iEimax = 2.33IEimax where IEimax = 
max(JIExl 2 + 1Eyl2 ). 

In the vicinity of the beam axis, i.e., r ~ 0, the approximations 
f ~ g ~ 0 are valid, then the transverse components of the 
field are given by Ex = By ~ O, Ey = -Ex ~ 0. Whereas Ez 
takes the maximum value. These properties are appropriate for 
acceleration. We see the mode considered is symmetric around 
the beam axis and therefore we call it TM0 mode. 

3 Acceleration mechanism 

We suppose that a relativistic test electron is injected from the 
left-hand side and directed to the right; the direction is the same 
as the laser beam. Since the transverse field on the axis is zero, 
we only focus our attention on interaction with the longitudi
nal field, Ez = Re(Ez), at x = y = 0. With ( = zl£0 , w2 = 
wW + (2 ) and familiar relations, sin(2 tan-1 () = 2(1(1 + (2 ), 

and cos(2 tan-1 () = (1 - ( 2 )1(1 + (2), we have 

(6) 

where 1/; = wt - kz + 1/Jo, 1/Jo being the phase of a particle to 
start at z = -£0 , which is the case through the text. We assume 
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the injected electron has a large "(, e.g., 103 , and then we may 
approximate 'if; by 

(7) 

where we have used t ~ (z+£0 )/v. and (1-/3.) ~ 1/2"(2 • Relation 
(7) implies that for the accelerating electron, 'if; is nearly locked 
at the initial phase 'if;o. This fact is already known in the electron 
linear accelerator in which a longitudinal electromagnetic wave 
with the velocity of light cis used. We must, however, note that 
the actual phase is '¢;+<1>01 as seen in expression (5) and this point 
will be discussed later on. 

Now assuming that 'Y is large enough, we replace 'if; in eq.(6) 
by '¢;0 and then we easily see the motion of electron is governed 
by the following energy conservation i:elation 

mc2 'Y + U(() = mc2 'Yo + U((o) = I<o, 

U(() -/_'1 qE.(()£0d(, 

-qAwo(( sin 'if;o -cos '¢;0)/(1 + ( 2 ). 

Figure 1 shows a typical profile of U ( (). 

-<...Jo 

~ r-----------~--------------~ 
i 

-1 0 

Fig.1 

The U ( () has two extremums u+ 
which are given by 

1 
-+ ( 

U((+) and u-

u± = (qAwo/2)(=!=1 +cos 'if;o), 

(± = (±1 +cos 1/Jo)/ sin 'ifJo. 

(8) 

(9) 

(10) 

(11) 
(12) 

The u+ and u- are the minimum and the maximum, respectively, 
irrespective of the sign of sin '¢;0. When the initial energy I<0 of 
the electron is greater than U((-), the particle can run over the 
ma.ximum at ( = c- even if (o < c- and the energy gain is 
expressed as 

mc2 !::.'Y = U((o)- U((). (13) 

The energy gain between ( = 1 and (0 = -1, or in the Rayleigh 
range, is given by 

mc2!::."(=U(-1)-U(1)=qAw0 sin'if;0 • (14) 

We understand that the maximum energy gain is achieved when 
sin '¢;0 = 1. We see, in this case, (+ = 1 and (- = -1, which 
coincide with the both ends of the Rayleigh range, and there the 
potential takes its minimum and maximum. For sin '¢;0 < 0, the 
electron is decelerated as is seen from Eq.(14). 

4 Longitudinal phase stability 

The phase locking between the electron and the longitudinal field 
is a sufficient condition for a continuous acceleration in the full 

Rayleigh range. Figure 2 gives critical 'Yo, "(p, to the phase-lock 
approximation for sin '¢;0 = 1 and for various kw0 • 

Fig.2 _, qA/mc2k 

Above the curve the difference between the numerical value 
(!::.'Y)num obtained by using the exact E.('if;) and the analytical 
value (!::.'Y)an ofEq.(14) is less than 1%. The 'Yp levels off for small 
amplitude A as seen in the figure. This is because the test electron 
just passes through the Rayleigh range with little interaction with 
the field having such a small amplitude. We can estimate 'Yp in 
this limit analytically and have 'Yp = kw0 ( 1r- 2)112 /(2,;?£) which 
agrees with the numerical one, where c: = j1- (!::.'Y)an/(!::.'Y)numl· 
Dotted lines in the figure show analytical results. 

We consider the matching between the particle and the wave. 
The phase velocity Vp is obtained from relation wt - kz + 
<l>o1 =constant as 

Obviously Vp is greater than c and then the accelerating particle 
sooner or later falls down into the deceleration phase. To be 
precise, we notice that 2 tan-1( 1) = 1r /2 and 2 tan - 1 ( -1) = -1r /2 
and then from Eq.(7) the phase wt- kz + <1>01 ~ <1> 01 differs by 7r 

between (0 = -1 and ( = 1 or between the initial and the final 
phases. This means that the particle is accelerated in the half 
wave length. In this sense the acceleration scheme presented here 
is essentially different from the usual electron linear accelerator 
in which electrons can be accelerated indefinitely. 

5 Tansverse stability 

So far we have assumed that the test electron runs along the beam 
axis on the center. Consequently the particle is not affected by 
the transverse field because Bx and By are zero on the a.xis and 
so Ex and Ey. When the particle is injected off the a.xis, however, 
it may be deflected by the transverse fields. We then examine the 
stability of particle orbit. We deal with the motion on the x- z 
plane, since the laser beam of TM0 mode is symmetric around 
the axis. We inject the test particle at the point ( w0 /-./2, 0, -£0), 
bearing in mind that lEx I takes its maximum at ( w0/-./2, 0, 0). 
The x component of the force, Fx, affecting the electron is 

A similar force qEy/(2'Y2 ) acts on the electron on they- z plane. 
We examine the orbit for sin '¢;0 = 1 for which the particle is 
continuously accelerated. If the electron is not deflected imme
diately after the injection, there occurs no deflection afterwards 
since 'Y > 'Yo and since IFxl rapidly decreases. Suppose that we 
reduce 'Yo and that for some 'Yo, say 'Yd, the electron starts to be 
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deflected near (0 = -1. We call 'Yd the marginal 'Yo that divides 
the motion into the stable and the unstable ones. 

Fig.3 
-+ qA/mc2k 

The 'Yd is given in Fig.3 together with the filed Ex in the inlet. 
Each curve has its maximum. This is caused by a property of Fx 
in Eq.(16). That is, for a small A, Fx is proportional to Ex or A, 
while for a large A, Fx is inversely proportional to A. Now we 
understand that if we use a laser with a kw0 an electron whose 
'Yo is above both curves labeled with the same kw0 in Fig.2 and 
in Fig.3 is stably accelerated. 

6 Discussion 

We show here some examples of electron acceleration. Suppose 
that 'Yo = 103 (510MeV of the electron) which safelyclears the 
above criterions irrespective of kw0 and that ), = IQ-3cm (C02 

laser). The maximum energy gain Gmax = mc2(Ll.'Y)max of the 
electron is given by Eq.(14) with sin '1/Jo = 1. The A relates to 
IEimax as indicated previously and then we easily obtain Gmax in 
terms of jEimax· We here express Gmaz in term of the power P 
of the beam as follows: 

2 [ 2 2 ] 1/ 2 Gmax = 0.64 X 10 P(W /em )w0 (cm) eV. (17) 

We now note that P x 1rw5 is constant provided the total power 
is fixed. This implies that Gmax is constant in this constraint no 
matter how we control w0 , while the acceleration length Ra = 
j(- - (+j = 2£0 = kw~ is reduced if we have a stronger focus. 
We now choose P = 1014 W fcm2 , a realistic value in view of 
the present state of the art in laser technology, and w0 = 0.1 
em. Then we have Gmax = 6.4 X 107eV and Ra = 63cm. If 
we use the those values, we will have 1TeV electrons in a 10 km 
long device that is made of 16 x 103 units of the acceleration 
element with 63cm long. With the same power and with w0 = 
0.033cm, the Ra reduces to 6.3cm and the total length of the 1Te V 
accelerator will be reduced to 1km though the focused electric 
field will increase to 109V /em, still within the present state of 
the art of laser technology. 

Converter 

Fig.4 

Off-Axial 
Reflector 

Energy 
Analyzer 

A schematic diagram of an experiment to verify the acceleration 
mechanism presented here is shown in Fig.4. 

7 Conclusion 

We have proposed a new scheme of electron acceleration by us
ing the longitudinal field accompanying a laser of finite width. 
We first derive analytically Hermite-Gaussian laser beams by us
ing the paraxial approximation. The field components properly 
include a longitudinal electric field whose intensity is maximum 
at the beam axis while the transverse components become zero 
there. A test electron is phase-locked and stably accelerated when 
'Yo > 'Yp which corresponds to the minimum injection energy and 
also when 'Yo > 'Yd above which the deflection by Ex and Ey is 
negligible. It is shown that the maximum energy increment is 
independent oLthe injection energy of a particle and is given by 
qAwo. A numerical demonstration for applying this scheme to 
an accelerator is made and we find that it is plausible to have an 
1Te V electron accelerator with a few kilometers length by the use 
of lasers of the present state of the art. 
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