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Abstract 

This paper describes an outline and some examples of three di
mensional electric field calculations with a computer code developed 
at NIRS. In the code, a surface charge method is adopted because of 
it's simplicity in the mesh establishing procedure. The charge density 
in a triangular mesh is assumed to distribute with a linear function of 
the position. 

The electric field distribution is calculated for a pair of drift tubes 
with the focusing fingers on the opposing surfaces. The field distribu
tion in an acceleration gap is analyzed with a Fourier-Bessel series 
expansion method. The calculated results excellently reproduces the 
measured data with a magnetic mode! .. 

Introduction 

An interdigital-H type linac1l is very effective for heavy ion ac
celeration because of its excellently high shunt impedance. A size of 
the acceleration cavity is reasonable even for relatively low operation 
frequency of less than about 100 MHz. In order to make the better use 
of such characteristics of an IH linac, it is very much desired to reduce 
the capacitance between opposing drift tubes. An RFQ structure pro
posed by D. Boussard2l, which is sometimes called as a fingered drift 
tube linac (FDTL), may be one of the best solution for reducing the 
total capacitance without losing the transverse acceptance. 

An analytic expression is given by D. Boussard for the electric 
field distribution in an acceleration gap of the FDTL, putting a crude 
assumption on the boundary conditions. To get precise values of the 
field distribution, however, the numerical three dimensional calculation 
is required, because the fingered drift tube (FDT) has not a cylindrical 
symmetry. A computer code POT3D is developed mainly for getting 
the acceleration and focusing efficiencies of the FDTL. The code is 
expected to be effective for the estimation of the capacitance between 
two FDT electrodes. This information is very important to predict a 
resonant frequency of the cavity and a gap voltage distribution along 
the beam axis. The computer code is also applicable to a 4-vane type 
RFQ electrodes to calculate the reduction factor of A1o coefficient 
originally pointed out by K. Crandall3) at LANL. 

Outline of the surface charge method 

A surface charge method is adopted for the POT3D code, be
cause this method requires the most simple procedure for establishing 
a mesh. Apart from a widely used two dimensional codes, the surface 
charge method requires meshes only on the surfaces of the electrodes. 
The charge density is assumed to be a linear function of the position 
in a triangular mesh on the conductor surface. 

The potential at any point identified by a position vector ris given 
by the following equation 

U(r) = L fs u(S)G(r,S)dS, . . (1) 

where u(S) is a charge density induced on the conductor surface, and 
G(r, S) is the potential produced at the point rby a unit charge located 
at the position son the ith conductor surface. 

The charge density u( S) is assumed to be linear with the position 
s. Then U(T) is represented by a weighted summation of the charge 
densities at the mesh intersects. Since Eq.(1) is also valid for any 
point on the conductor surface, we get a set of such linear equations 
for all mesh points. In the surface charge method, the charge densiiy 
distribution on the conductor surfaces is directly obtained by solving 
such set of the combined linear equations. 

The electric field components are also described by an analytic 
equation similar to Eq.(1) and calculated more precisely than the con
ventional numeric codes using a difference equation or other methods 
which need the numerical differentiation. The field strength of this 

method, however, cannot give a correct value on the mesh boundary, 
since the charge density and its derivative are not continuous on the 
boundary lines. 

Multi pole expansion of the electric field 

The electrostatic potential having a periodicity of L in z direction 
can be expanded into a Fourier-Bessel series of 

v: 00 00 

U(r, cp, z) = T L L Fnm(r) ·cos mcp ·cos nkz, (2) 
m=On=O 

where a cylindrical coordinate system (r, cp, z) is adopted. The symbol 
k stands for the wave number k = 2'11' /Land the radial function Fnm(r) 
is given by the following equations 

Fom(r) 
Fnm(r) 

Aom. rm 

Anm · Im(nkr). 
(3) 
(4) 

The multipole field amplitude, Anm, is obtained by doubly inte
grating the potential function througlt a half period in z and cp direc
tions: 

2 [[ (5) Aoo 2V, U(r, cp, z)dcpde 
'1!' g 0 0 

A om 4 {{ ~ U(r,cp,z)cosmcpdcpde 
~· rm 9 o o (6) 

A no 4 [[ '1!'2 lo(nkr)V9 0 0 U(r,cp,z)cosnedcpde (7) 

Anm 8 [[ '11'2 lm(nkr)V
9 0 0 U(r,cp,z)cosmcpcosnedcpde, (8) 

where V9 is a potential difference between two adjacent electrodes for 
a FDTL and will be replaced by an intervane voltage, v., for an RFQ 
electrode. 

Using the Anm coefficients given above, the electric field compo
nents are represented by 

v: 00 00 

E. = J.. L L nkAnmlm(nkr). cos mcp. sin ne (9) 
2 m=On=l 

Er = - Vg f.: mAomrm-l cos mcp 
2 m=O . 

v: 00 00 

- 29 L: L nkAnmi:,.(nkr) cos mcp cos ne, (10) 
m=On=l 

where e = kz. 
With these equations, the electric field in a region of interest is 

expanded to a series of multipole components. A component, which 
mainly contributes to the beam acceleration, has n = 1 and m = 0, 
whereas the terms with An2 act as the focusing forces. 

A transit time factor for a drift tube linac is defined as an inte
gration of E. multiplied by sine and is given by 

'1!' 00 

T = 4 L Almlm(kr)cosm<p. 
m=O 

(11) 

Usually, a value on the beam axis is adopted as a TTF. Even in a 
square wave approximation of the acceleration field, it is easy to show 
that the first term in Eq.(ll) gives main contribution to the energy 
gain across the gap. 
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Fig. 1: An example of the generated mesh for a FDT electrode. 

Only the first term of this series expansion exists in an acceleration 
field generated by a set of ideal 4-vane type RFQ electrodes, and the 
factor A10 is simply described as an acceleration efficiency A in a 
conventional RFQ beam dynamic theory. A transit time factor in the 
RFQ theory is defined to be 1r /4. 

Brief description of the code 

Similar to the SUPERFISH program, the computer code POT3D 
is divided into three program steps. The first step of the code, 
MESH3D, generates the triangular meshes on the conductor surfaces. 
A cylinder, a sphere, a sector etc. are defined as macro commands and 
can be used to simplify the mesh generating procedure. The commands 
to generate a FDT electrode and an RFQ vane are also prepared. 

The second step, POT3D, establishes and solves the combined 
linear equations described above. For getting the solution of the com
bined equation, a Gauss-Jordan type sweep out method is applied. 
Throughout this step, the double precision calculations are adopted to 
minimize the computational errors. 

The third step of the code, OUT3D, calculates the potential and 
field strength at any given position. The major part of this step is just 
the same as POT3D step except that a single precision calculation is 
used in this step. The mathematical data processing, the multipole 
coefficients calculation for an example, is done in the third step. 

The numerical data which describes the meshes, the charge den
sities etc. are written as a file and read by the next steps. The overall 
codes are written with FORTRAN77 and run on a VAX-8250 com
puter (1.4 MIPS). A typical CPU time required by a FDT analysis is 
around 3000 sec. 

Calculated results for FDT electrodes 

Figure 1 shows an example of the generated mesh for a FDT 
electrode. Since the data input of some symmetry conditions are ac
ceptable by the code, the mesh is generated only on 1/8 conductor 
surfaces for this case. The reduction in the number of mesh points is 
very effective to shorten the computational time. The focusing finger 
is assumed to have a cylindrical shape with a half sphere on the top. 

The calculated field distributions are given in Fig. 2 with the 
open symbols. The solid curves in the figure, indicate the experimen
tal results measured with a magnetic model4 >. Three different curves 
in (b) and (c) indicate the values at different axial positions. The nor
malization factor for the surface charge is calculated with Ez results 
and the same factor is used for Ey and Ex cases. 

A transit time factor is calculated with the computer code, and 
gives very close value to that of a square wave approximation. The 
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Fig. 2: (a) An example of the calculated acceleration field, E. (open 
symbols). The solid curve indicates the experimental results measured 
with a magnetic model. The transverse field component's (b) Ey and 
(c) Ex are also given as functions with the positions along y and x 
directions, respectively. Three different curves in (b) and (c) indicate 
the field strength at different axial positions. Normalization factor of 
the surface charge is the same for all figures. 

contribution from the higher order terms is very small even for the 
off axis beams. These results make it very simple to describe the 
beam dynamics through a FDTL, because an energy gain at the gap 
is almost independent from radial positions. The analytic method of 
Boussard, however, gives completely different dependence on a gap to 
cell length ratio. This may come from too much simplification about 
the boundary conditions of the potential function in his expression. 

The multi pole analysis of the transverse electric field is also done 
for the same configuration of drift tubes. An example of the calculated 
results is shown in Fig. 3 together with the experimental curves mea
sured by a small rotating coil with an FFT analyzer. The calculated 
values include up to n = 4 harmonics both for m = 2 and m = 4 
results. The m = 4 component may be in a region of the experimental 
error, since odd m components are observed with nearly equal ampli
tudes. The overall agreement is very good both in longitudinal and 
transverse field components. 

Discussions 

The multipole components of A10 is calculated for 4-vane type 
RFQ electrodes. The reduction of this factor sometimes seriously af
fects on the acceleration characteristics of two dimensiunally machined 
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Fig. 3: The multipole field strength as functions with axial position. 
The solid curves indicate the experimental results measured with a 
small rotating coil. The calculated results are a summation of the 
field components up to n = 4. The m = 4 curve is in a region of the 
experimental error. 

vane tops3l. The calculated results very well reproduces the table given 
by K. Crandall both for the vanes with a constant radius and with vari
able radii. The difference between two calculations is about I% or less. 
An example of a mesh used in a field calculation for RFQ electrodes 
is shown in Fig. 4. 

It has been clear that POT3D gives excellent results for 3D electric 
field calculation. The beam dynamic design of FDTL will be easily 
done without time consuming model measurements, since the electric 
field distribution in the acceleration gap is fully predictable with this 
code. The capacitance between the opposing FDT electrodes will also 
give the very important knowledge to calculate the IH cavity geometry. 

As a next target of this code, an effective length of an electric 
quadrupole electrode will be obtained with reasonable accuracy in near 
future. The interference effects of two adjacent electrodes will also be 
checked. 
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Fig. 4: An example of the generated mesh for RFQ electrodes. 


