
ACCELERATOR OPERATION WITH GENERAL-PURPOSE COMPUTER

E. Kikutani, A. Akiyama, T. Katoh, H. Koiso, s. Kurokawa and K. Oide

KEK, National Laboratory for High Energy Physics
Oho-machi, Tsukuba-gun, Ibaraki-ken, 305, Japan

Abstract

The TRISTAN Accumulation Ring is being
operated under a control system which consists
of a token-passing ring network of eleven
minicomputers. Tasks that overload these
minicomputers are processed on a back-end
general-purpose computer, M-200H, which is one
of the processors of the KEK central computer
system. One minicomputer in the ring network
and M-200H are connected via KEKNET, an in­
house high-speed network at KEK. The software
system of the TRISTAN control is based on the
NODAL interpreter language. The communication
with the back-end computer through KEKNET is
done using network functions which are NODAL
callable subroutines. Functions for
reading/writing a disk data-set on M-200H,
submitting a batch job, reading the status of
the submitted job, etc. are prepared.

Introduction

TRISTAN 1 is an electron-positron
collider facility, now being constructed at
National Laboratory for High Energy Physics
(KEK). It consists of three accelerators: 2.5
GeV Linac, 8 GeV Accumulation Ring (AR) and 30
GeV Main Ring (MR). The construction of AR
has been completed in October 1983 and now its
characteristics are being studied using elec­
tron beam.

AR and MR are controlled by a single
system which consists of 24 minicomputers and
a back-end computer. The minicomputers
actually control the accelerators, while the
back-end computer processes tasks which over­
load the minicomputers. As the back-end com­
puter we adopted a general-purpose computer,
HITACHI M-200H, which is one of the processors
of the KEK central computer system.

We can identify some advantages of using
a ~eneral-purpose computer for accelerator
operation as a back-end computer. The first
is continuity of works of designs and opera­
tions of accelerators. At KEK, and maybe at
other institutes, lattice designs are carried
out using a general-purpose computer. Many
programs used at design steps are also useful
for operation of the accelerator; therefore it
is convenient to use a general-purpose compu­
ter also as a back-end computer.

The second advantage is that general­
purpose computers have rich resources, such as
high speed calculation power, large memory
space, large disk space, various useful
peripherals, etc. For example, M-200H which
we are using as a back-end computer has a cal­
culation speed of 4.56 Mega FLOPS and 12-Mbyte
memory. A typical program used for an orbit
correction (we will describe it later) neces­
sitates 4-Mbyte memory and 10-second CPU time
by M-200H. Then if we want to operate the
accelerator without wasting long waiting time,
it is necessary to use a computer of this
class.

On the other hand, there are disadvan­
tages of using a general-purpose computer.
The typical one is the slow or unpredictable

338

response time due to sharing the CPU and other
resources with other batch jobs. We have
overcome this difficulty by using a special
job class that has a higher priority in job
scheduling.

Hardware system

At present AR is operated under a comput­
er control system consisting of eleven mini­
computers (HITACHI HIDIC 80E's) that make a
subset of 24 minicompUters mentioned above.
These computers are linked together by a
token-passing ring network of optical-fiber
cables with the transmission speed of 10 Mbps.
Figure 1 illustrates the structure of the com­
puter control system. 2

One minicomputer (LIBRARY) in the network
and M-200H are connected with KEKNET. 3 KEKNET
was originally designed for transferring data
produced by high-energy physics experiments
from data-taking minicomputers to the KEK cen­
tral computer system. The maximum data trans­
fer rate of KEKNET is 500 Kbyte/s.

Operator's Console

DO DO DO

Fig. 1 TRISTAN Accelerator control system

Figure 2 explains the KEKNET system.
Data are transferred through two repeater com­
puters. The repeater computer I (HIDIC 80),
which is located near M-200H, is connected to
the channel of M-200H. The repeater computer
II (HIDIC 80E) is located at the Counter Ex­
periment Hall, where high-energy physics ex­
periments are made. It communicates with
data-taking computers of high-energy physics
experiments and also with the LIBRARY computer
of the TRISTAN control system. These two
repeater computers are linked to each other by
the same type ring network as the TRISTAN con­
trol system.

The back-end M-200H is one of the pro­
cessors of the KEK central computer system.
This system consists of three M-200H's named
~PU A, CPU B, and CPU C, which are connected

KEKNET

HlDIC 80E

Fig. 2 KEKNET and its related system

to form a loosely coupled multi-processor

system. The CPU A with 12-Mbyte memory is

used for long-time batch jobs, and the CPU B

with 16-Mbyte memory is used mainly for

TSS terminal jobs and partially for batch

jobs. The CPU C with 12-Mbyte memory is used

both for relatively short-time batch jobs and

for on-line real-time processing jobs. The

repeater computer I is connected to the CPU c.
This three-CPU system is installed in the KEK

central computer building; the distance from

the TRISTAN control room is about 1 km.

Software system

The software system of the TRISTAN con­

trol~ is based on the NODAL system. NODAL is

an interpreter language and was originally

devised at CERN for controlling SPS. 5 In our

system all application programs are written in

NODAL, while basic device handlers and some

complicated routines are written in a compiler

language PCL (Process Control Language pre­

pared by HITACHI) as subroutines that are

called from NODAL. Following the SPS NODAL

system, we call device handlers data modules,

and other subroutines NODAL functions.

Examples of the NODAL functions are graphic

CRT handlers and mathematical functions. The

NODAL system dynamically links the interpreter

and these subroutines at run time.

Table 1 Summary of network functions

FALOC

FR.ARAY

FWARAY

FRSTR

FWSTR

FCLOSE

FSMBIT

FSTATU

Allocate a data-set

Read data from a data-set and set

them into a NODAL arra~

Write data stored in a NODAL array

on a data-set

Read data from a data-set and set

them into a NODAL string variable

Write data stored in a NODAL string

variable on a data-set

Close and free a data-set

Submit a batch job

Read status of the submitted job

339

The communication with the back-end com­

puter through KEKNET ar& done by network func­

tions. Table 1 summarizes the basic network

functions. For disk I/0 action four func­

tions FRARAY, FWARAY, FRSTR, and FWSTR are

prepared. The former two functions transfer

data to/from a NODAL array from/to a disk

data-set on M-200H, while the latter two func­

tions transfer data to/from a NODAL string

variable from/to a disk data-set. In both

cases disk I/0 is done record by record. With

the function FSBMIT, we can submit a batch job

on M-200H; users can use the same load module

and the same job control language (JCL) as the

off-line analysis. This scheme guarantees the

continuity between off-line tasks and on-line

accelerator operation. The status of the sub­

mitted job can be known by the function

FSTATU.

A typical sample program using these

functions is as follows:

1.10 CALL FALOC ('R' 'TEST' FN, RL)
1.12 $SET ST=FRSTR(FN):3.10 '
1.14 TYPE ST !
1.16 GOTO 1.12

3.10 FCLOSE(FN)
3.12 END

This program reads data from a data-set

named TEST on M-200H, which contains some

EBCDIC code information, and types them on a

terminal, record by record. The first line

1.10 allocates the data-set for reading (the

argument 1R• denotes that) and the lines 1.12

through 1.16 read the records successively

until the end of the data-set is detected. The

line 3.10 closes and frees the allocated data­

set. If one wants to allocate a data-set for

writing, he must write,

1.10 CALL FALOC ('W', 'TEST', FN, RL)

instead of the line 1.10 of the example above.

For submitting jobs one can use the func­

tion FSBMIT:

CALL FSBMIT (DN, JN)

where DN is the name of the data-set which

contains the JCL and JN is the job number

given by the function. JN is used later to

identify each submitted job in the function

FSTATU. As we have seen, we can access to the

back-end computer within the framework of the

KEK NODAL system.

The software structure in the back-end

computer is illustrated in Fig. 3. The On­

line Control Program (OCP), which has been

started ju~t after initial program loading of

M-200H, controls flows of ~ata on KEKNET and

supervises resources concerning the network.

Under the control of OCP, the Accelerator

Operation Monitor Program (AOMP) is running.

Since OCP carries out actual I/0. processes,

AOMP and other on-line jobs communicate with

OCP by calling some subroutines prepared in

the system library. AOMP is running through­

out the accelerator operating hours. It waits

for the interruption which i~dicates that OCP

has received the data from KEKNET. On inter­

ruption it will get data, analyse them, and

take the necessary ·action. After completion

of the action, AOMP sends the response and

related data to KEKNET. If necessary AOMP

converts character codes b~tween ASCII and

EBCDIC and representation format of floating

Network

Fig. 3 Software structure in the back-end
computer

point numbers.

As explained above, AOMP works like a
terminal monitor program used for monitoring
time sharing terminal jobs. The terminal mon­
itor program takes some action on the inter­
ruption caused by striking the SEND (or
RETURN) key by a user. After the completion
of the action it waits for the next interrup­
tion.

In this network system, AOMP and the
user's job submitted by AOMP are permitted to
run in a special job class. In this job­
class, jobs start immediately after the sub­
mission. In addition, these jobs are given a
higher priority in occupation of the CPU.

Operational example

A typical example which uses the back-end
computer is the correction of closed orbit
distortions (C.O.D. Corrections). 6 A series of
NODAL programs manipulates the steps of the
procedure. At first beam positions from 83
button monitors are obtained using the corre­
sponding data module, and are displayed on a
color graphic CRT mounted on the operator's
console. These data (about 3.6 Kbytes) are
sent to M-200H by the function FWARAY. The
computer code PETROK, which is the KEK version
of PETROS developed at DESY, is submitted by
the function FSBMIT. PETROK calculates kick
angles of the steering magnets and expected
beam positions using the data of the beam po-

340

sition monitors and the basic parameters of
the ring lattice already stored in the disk
data-sets of M-200H and stores them on another
disk data-set. The CPU time for PETROK is 10
seconds and the typical elapsed time is 30
seconds.

After the completion of the PETROK job,
which is detected by the function FSTATU, the
NODAL program reads back calculated kick
angles and the expected beam positions using
the function FRARAY. The size of these data
amounts to 5.6 Kbytes. The operator judges if
he actually loads the calculated steering ex­
citation into the magnets or not by informa­
tion appeared on the CRT display.

At last actual loading is carried out
with the function of managing the power sup­
plies of the steering magnets.

Acknowledgements

We wish to thank Professors Y. Kimura and
G. Horikoshi for their encouragement and sup­
port during the work. We also thank the mem­
bers of the TRISTAN control group and TRISTAN
operation group for their stimulating discus­
sion.

References

1) T. Nishikawa and G. Horikoshi: Status of
KEK TRISTAN Project, IEEE Trans. Nucl.
Sci. 30 (1983) 1983.

2) H. Koiso et al.: Computer Control System
of TRISTAN, contributed paper to this con­
ference.

3) Y. Asano et al.: KEKNET, A High Speed On­
line Network for High Energy Physics,
Nucl. Instrum. Methods 159 (1979) 7.

4) A. Akiyama et al.: KEK NODAL User's Guide,
KEK Report 84-5 (1984).

5) M.C. Crowley-Milling and G.C. Shering: The
NODAL System for the SPS, CERN 78-07
(1978).

6) H. Fukuma et al.: Correction of Closed
Orbit Distortion in TRISTAN AR, contri­
buted paper to this conference.

