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We have developed a program which computes the resonant frequencies and 

fields in an arbitrary shaped three dimensional cavity by finite element 

method. We take electric field E = (Ex,Ey,Ez) as unknown variables and solve 

the eigenvalue problem for the Maxwell equations imposing boundary conditions. 

Divergence-free condition is treated approximately by penalty method. 

Satisfactory results are obtained for rectangular cavities, cylindrical 

cavities and those with smoothly deformed parts. 

1. Introduction 
With the progress of computer, numerical calculation techniques such as 

finite element method have been developed for solving partial differential 

equations. In the case of two dimensional problem such as a waveguide with 

arbitrary cross sectional shape or axisymmetric electromagnetic resonators, 

many works have been done with satisfactory resultsl). But actually we have 

many problems that are hard to treat with two dimensional calculations, and 

true three dimensional calculations are strongly required. In general three 

di~ensional case, only a few papers have been published2). It is no more 

useful to use only one unknown variable such as a scaler 'potential. It is 

convenient to take electric field E = (Ex,Ey,Ez) as unknown variables because 

of the easy treatment of boundary conditions and easy understanding of 

physical meaning. In this case, we must take care of the condition divE= 0. 

2. Basic Equations 
We deal with the time-harmonic propagation of electromagnetic waves in 

vacuum of bounded space Q surrounded by perfect conductor. Eliminating H, 

Maxwell's equations are 
rot rotE- A E = 0, divE= 0 (in Q ), (1) 

where A= w2sM, sand Mare dielectric constant and magnetic permeability in 

vacuum. Boundary conditions are 
n x E = 0 ( on r ) , (2) 

where n denotes the outward normal on the boundary r. This is an eigenvalue 

problem for three components of electric field E. Restriction of div E = 0 is 

to be imposed in order to exclude undesired solutions. Penalty method is a 

convenient way to impose such a restriction2). We take a weak formulation. 

fa (rotE, rotoE )dV + s fa (divE, di voE )dV = A fa (E, oE )dV, (3) 

where s is a penalty parameter. Euler's equation is obtained from eqn. (3) as 

rot rotE - s grad divE = A E. (4) 

In this case, divE= 0 and rotE= 0 are satisfied when A= 0. For positive 

A, the solutions of eqn. (1) are always those of eqn. (4). Equations (4) may 

have other solutions than those of eqn. (1). But we are concerned with the 

solutions of several small eigenvalues. So far as the parameter s is set large 

in some degree, such a mixture can be avoided. Divergence-free condition can 

be checked by evaluating the following equations: 

div 
s fa (divE )2dV 

(5) 
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3. Calculations 
In the present study, four noded tetrahederal elements are used and Ex, Ey and Ez are approximated with the first-order test functions. In order to impose boundary conditions, Euler's angles are used, if necessary, to determine the normal direction and to rotate the axes at each surface point. Jennings method is used to solve the generalized eigenvalue problem Ax = A Bx for real symmetric band matrices3J. First we made calculations for a recutangular cavity resonator. Parameter s is set to 1 and the smallest five eigenvalues are calculated. In this case, unphysical solutions are not found below the fifth mode. Next we made calculations for a cylinder cavity and the example is shown in fig. 1. In this case, unphysical solutions are mixed for certain region of s values. It can be seen that these solutions do not satisfy the condition of divE= 0. Parameter s-dependence of eigenvalues are shown in fig.2. We can see that the s-dependence is small for physical solutions. 

Furthermore, we made some calculations in the case of deforming these rectangular and cylinder cavities slightly and smoothly. Obtained results are consistent with the perturbation theory as far as the deformation is small. When the deformation is large, however, the condition div E 0 does not become fully satisfied because of the roughness of mesh size and the slow convergence of solution. In the present calculations, number of the nodal points is limited to less than 1000 because of the memory size of the computer, which means about ten nodes in each direction. For very complicated boundary shape, errors become large because mesh size is coarse and therefore the condition divE= 0 is not fully satisfied. But this difficulty will be overcome with increasing available memory size. 
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Fig. 1 Calculations for 1/4 
cylinder of 10 in height and 
10 in radial length. At two 
planes of x = 0 and y = 0, 
mirror symmetry boundary condi
tions are imposed. s = 1. 
Results are shown by contour 
plots of E , E and E at z = 

X y Z 
z=l.67 z=3.33 

Fig.1-b 
z=5.0 constant planes. 

(a) Schematic view. of 1/4 
cylindrical cavity. 
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(b) Contour plot for 5th mode 
(TM210 mode). 

Fig. 2 Penalty parameter dependence 
of eigenvalues for 1/4 cylindrical 
cavity. Varying s-parameter from o.5 
to 1.5, we calculate five modes for 
each s. Among these solutions, physi
cal ly allowed ones are three modes 
(TMOlO' TE211 and TM210 ). Physically 
allowed modes have little s-dependence. 
In order to distinguish physical ones, 
not only s-dependence but also the 
condition div E = 0 must be investi
gated. 
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