MEASUREMENT OF ELECTRON-SPIN POLARIZATION OF SODIUM ATOMS FOR OPTICAL PUMPING TYPE POLARIZED ION SOURCE

Yoshiharu MORI, Kiyoshi IKEGAMI, Akira TAKAGI and Sadayoshi FUKUMOTO

KEK, National Laboratory for High Energy Physics

A new type of polarized ion source which uses electron pick-up reactions of low energy H⁺ ions from electron-spin polarized sodium atoms has been developed at KEK. Electron-spin polarized sodium atoms are produced by optical pumping with a single frequency dye laser which is tuned to the wavelength of the sodium $D_1(589.593 \text{ nm})$ line. Electron-spin polarization of sodium atoms is strongly affected by the laser power and the sodium target density. It is quite important to measure the electron-spin polarization of optically pumped sodium atoms for the development of this polarized ion source. A very useful scheme for this purpose has been proposed and experimentally performed recently.¹⁾ This scheme utilizes Faraday rotation based on an optically anomalous dispersion at the edges of a resonance line. It has no deteriorating effects on optically pumped atoms and gives a polarization value averaged over the target cell length.

The amount of Faraday rotation comes from the difference of the refractive indices for left and right circularly polarized light.

$$\theta = \frac{\pi \ell}{\lambda} (n_{+} - n_{-}) , \qquad (1)$$

where n₁ and n₂ are the refractive indices for left and right circular polarization respectively, λ is the wavelength of the light and & is the target length. Refractive indices are affected by the magnetic field and the electron-spin polarization. So, θ can be written as follows.

 $\theta = \theta_0 + \alpha P \theta_0 , \qquad (2)$

where P is the electron-spin polarization of the optically pumped sodium atoms and θ_0 is the Faraday rotation angle for the unpolarized sodium atoms and α can be obtained theoretically.² α depends only on the magnetic field as shown in Fig. 1. If θ and θ_0 are measured, the electron-spin polarization can be obtained from eq. (2).

Fig. 2 shows an experimental set-up of the Faraday rotation method. A single frequency dye laser (Spectra Physics 380-D) was used for the optical pumping. The output power of the laser was about 1.5 W maximum and the available frequency scanning range was 30 GHz. The frequency of the laser was carefully tuned to the particular resonant frequency of the sodium $D_1 \sigma^+$ or σ^- line. Linearly polarized probe laser light from the wide band dye laser (Spectra Physics 375) was introduced to the sodium cell with the pumping laser light through a low transmission (2 %) mirror M_1 . The wide band dye laser was tuned to the wavelength of 589.3 nm which was the most suitable wavelength for the Faraday rotation method.

A spectroscope was set at the wavelength of 589.3 nm and placed after the Gran-Thomson polariser which was rotated by 45 degrees with respect to the probe light polarisation plane. When the polarization plane of the probe light is rotated through an angle, θ , by the Faraday rotation effect, the light intensity through the spectroscope is given by,

$$I(\theta) = 2I(0) \sin^2(\frac{\pi}{4} + \theta)$$
, (3)

where I(0) is the light intensity when the magnetic field is zero. θ and θ_0 in eq. (2) can be obtained from eq. (3).

In Fig. 3, the measured values of the electron-spin polarization of sodium atoms are shown for the various laser powers as a function of the target thickness. At a target thickness of 2×10^{13} atoms/cm², the spin polarization was 60 % at the maximum and this value agreed with the

theoretically predicted polarization value. We are now preparing another single frequency dye laser. Polarization is expected to increase with two lasers.

In a preliminary experiment using the 16.5 GHz ECR ion source and a single frequency ring dye laser, we have obtained a polarized H ion beam of 23 μ A. The H ion beam current as a function of the sodium target thickness is also shown in Fig. 3.

References

- 1) W.D. Cornelius et al., AIP Conf. Proc., No.80, p.173 (1981).
- Y. Mori, K. Ikegami, A. Takagi and S. Fukumoto, to be published in KEK internal report.

Fig.3 Electron-spin polarization of sodium atoms and polarized H ion current as a function of sodium target thickness for three laser powers.

-226-