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Abstract 
Combination of main and higher harmonic RF systems, which produces a zero 

slope of the RF waveform, realizes a biquadratic RF potential in the synchro­
tron phase space and yields a longer bunch and a very large synchrotron frequ­
ency spread. In this paper, a dispersion relation is presented for electron 
bunches in the biquadratic RF potential by using the canonical formulation of 
Suzuki. A greatly increased stability limit due to Landau damping is shown 
numerically. 

HAMILTONIAN AND DISPERSION RELATION 
A double RF system is considered as a useful cure for bunched beam insta­

bilities and synchro-betatron resonances, becayse it permits the control of a 
bunch length and phase oscillation frequency. 1 To maximize the bunch length, 
RF waveform should have zero slope at the bunch centre. This)condition gives 
a biquadratic RF potential and Hamiltonian can be written as 2 
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whyre the prime denotes the differentiation with respect to angular position 
8 3 ; cf>' = dcf>/d8. The notations and their numerical values used in a later ex­
ample are summarized in Table 1. From eq. (1), the phase motion cp, cf>'/Q can 
be expressed by the Jacobian elliptic function cn(u) and the product sn(~~dn(u). 
The action angle variables I, ~ are given by 
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We assume that a longitudinal solution of the Vlasov equation can be described 

by the ~um of the stationary distribution function fowhich is a function of 
only I 3 and a perturbed distribution function R (I) 
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The self.-consistent solution R (I) can be obtained by solvin1 the eigenvalue 
equations yielded by expansionmwith orthogonal polynomials." Howyver, here, 
instead of this method, we use the synthetic kernel approximation 5 which neg­
lects the higher radial modes except the lowest radial mode, because it gives 
a dominant term in general. After some algebla, we obtain a following disper­
sion relation for coherent frequency n 
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where 
M i (6) 
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and e is the normalization constant defined by relation m 
!~ exp(- O.ll42z4) z2m+J e! dz 1 

STABILITY LIMIT 

(9) 

We are interested in growing solutions; 
Q = ReQ + iimQ(ImQ > 0). In order to make 
the effect of the large synchrotron frequency 
spread on Landau damping clearly, we shall 
calculate a threshold current for the given 
impedance whose parameters are shown in Table 
1. The growth rate ImQ for the dipole mode m 
= 1 is shown in Fig. 1 by the solid line. It 
is found that the clear threshold appears 
under which the beam is stable. The broken 
line in Fig. 1 shows the growth rate for the 
case of no synchrotron frequency spread in 
the single RF system. Taking into account 
the real part of the frequency shift, we 
obtain a rough stability criterion that the 
absolute value of the coherent frequency 
shift in the single RF system should be 
smaller than the spread in the synchrotron 
frequency between center and rms of the bunch 
in the double RF system. 
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Fig. 1 The growth rate ImQ for 
the dipole mode m = 1 for the case 
of the narrowband impedance. 
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Table 1 
Notations and numerical values used for a example of a stability limit 

e 
m 

Ib 
E 
0'. 
(J 

orp/p 
fp 
Rr 
Qs 

peak voltage of the main RF 
stable phase angle of the main RF 
hwo harmonic angular frequency 
revolution angular frequency 

Qo/Wo = synchrotron tune in the single RF system 
ratio of main RF frequency and higher harmonic 
RF frequency 
elementary charge 
azimuthal mode number 
beam current 
beam energy 
momentum compaction factor 
rms bunch length measured in RF phase angle 
rms momentum spread of the bunch center 
resonant frequency 
shunt impedance 
quality factor 
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500 MHz x 21T 
100 kHz X 21T 
0.1 

2 

8 GeV 
10- 3 

0.447 
4.19 X 10- 3 

1000.015 MHz 
1 GQ 
80,000 


