HEAVY ION SOURCE FOR THE IPCR CYCLOTRON

I. Kohno, K. Ikegami and T. Kageyama

In the IPCR cyclotron some multiply-charged heavy ions are accelerated for 4188 hours in a year at present. In order to produce the multiply-charged heavy ions three kinds of ion source are used: a heavy ion source for a gaseous material to charge (type I), ion source for a metallic material to charge (type II) and an improved ion source (typeIII). Some characteristics and facilities of three type sources are indicated in the table 1. the construction and the pulsed operation of the type I source was described in the previous symposium¹). The metal ion source (type II) is of the electron-bombarded hot cathode type with a sputtering electrode installed in the anode of the source at the opposite position of the exit slit. The sputtering electrode is made of the material to charge. Figure 1 shows a block diagram of the system of the power supply for the metal ion souce. By using this source beams of several metal ions were extracted from the cyclotron with sufficient intensities as seen in table 2.

For producing Ne⁶⁺ ions an improved ion source (type III) has been developed, because the life time of the source (typeI) was very short (3^{6} hours) in the case of production of Ne⁶⁺ ions. Fig. 2 shows a cross sectional view of this source (type III). In this source it takes only 30 minutes to exchange the cathodes of the source. But, intensities of Ne⁶⁺ beams extracted from the cyclotron are decreased compared with those in the case of type I source.

Reference 1) I. Kohno et al., Proc. 2nd symposium on accelerator science and technology, Tokyo, p23 (1978)

Ion Source	Operation Mode	Supporting System	Upper C Size ^(mm)	athode Material	Lower Size ^{(mr}	Cathode ⁿ⁾ Material	Kinds of Produced Ions
Gaseous Ion Source	CW Pulsed Pulsed	two stems "	$10^{\phi} \times 10$ $9^{\phi} \times 11$ $8^{\phi} \times 8$	W Ta Ta	11 [¢] x17 "	Moor W W "	c^{4+}, n^{4+} n^{5+}, o^{5+} ne^{6+}
Metal Ion Source	CW	11	10 [¢] x10	Ψ.	11	11	Li ²⁺ ,Li ³⁺ Be ³⁺ ,B ⁴⁺
Improved Ion Source	Pulsed*	one	8 [¢] x8	Та	7 [¢] x17		Ne ⁶⁺

Table 1

* Duty factor 0.33~0.44 .

Fig. 1.

A block diagram of the power supply system for the metal ion source.

Table 2

Particle	Energy (MeV)	Arc Voltage(V)	Arc Current (A)	Sputtering voltage(V)	Charge material	Intensity at the gate (µA)
7 _{L1} 2+	29 - 48	320	3.7	200	LiF	1.5 - 2.0
7 _{L1} 3+	29 - 75	340	5.5	50	LIP	30 - 50 nA
6 _{L1} 2+	25 - 48	- 280	4.5	200	LIP	100 - 200 nA
Be ³⁺	45	470	4.6	700	Be	0.7 - 0.8
11 _B 3+	66	400	4.5	0	. B ₂ 03	1.2 - 1.3
10 _B 3+	60	400	4.5	0	B203	250 - 300 nA
11 _B 4+	66	400	4.5	0	B203	3 nA
11 _B 3+	66	400	5.0	900	BN	100 nA

Supporting gas : Ar, gas flow : 1.31 - 1.60 cc/min

BN : Boron nitride