PRELIMINARY STUDY OF BEAM BLOW-UP IN THE TOKYO LINAC

M. Oyamada and O. Konno

Laboratory of Nuclear Science, Tohoku University, Tomizawa, Sendai

I. Sato and S. Fukuda

National Laboratory for High Energy Physics, Oho, Tsukuba, Ibaraki

S. Tagawa, M. Washio, Y. Katsumura and T. Ueda

Nuclear Engineering Research Laboratory,

the Faculty of Engineering, University of Tokyo, Tokai, Ibaraki

Abstract

Preliminary measurement of the frequency of beam blow-up in the Tokyo linac (ML-35L) is described. It seems that beam blow-up took place at about 3982 MHz beyond the peak current of 280 mA.

Introduction

Tokyo linac consists of two 1.8 meter long accelerating structures and a subharmonics buncher. Each loading disk of the accelerating structures has two suppressor holes in addition to center hole and is assembled alternately for prevent HEM₁₁ mode from propagation¹. It has been considered that this structure is effective to suppress the beam blow-up derived from HEM mode. Beyond the peak current of 280 mA at 4.4 μS beam width, the beam blow-up phenomenon was observed and we were motivated to measure the frequency of this beam blow-up.

Measurement

Measurement Measurement of this were carried out in a same way as the Tohoku linac². We found two pairs of frequencies ($f_{=} 4586$, f_{b} = 3982 MHz) and ($f'_{=} 4548$, $f'_{=} 4020$ MHz) lower than 4.6 MHz. The former was strong and the latter was weak. The sums of fre-quencies were same and equal to $3f_{0}$, where f_{0} means accelerating frequency 2856 MHz. These pairs were accompanied with beam blow-up, therefore f_{0} or f_{1} is considered as the frequency of beam blow-up then remainder must be the beat $(3f_{0}-f_{b})$. On the assump-tion that $f_{b}=f_{1}$, f_{1} and f_{1} in fig.l correspond to $2f_{1}$, b_{1} , $-f_{0}=$ 5108 MHz and f_{b} MHz. On the other hand, the assumption that $f_{1}=$ f_{1} , f_{1} and f_{2} in fig.s of f_{1} , f_{2} and f_{1} . Hence we conclude that beam blow-up took place at 3962 MHz. According reference 1), the pass-band of HEM₁₁ mode for this kind of accelerating structure was found between 4340 and 4490 MHz by the test cavities. We doubt whether the dispersion curve for HEM₁₂ the test cavities. We doubt whether the dispersion curve for HEM mode of the test cavities was equal to one of the practical accelerating structure.

References

- 1) K. Irie, Y. Nemoto, I. Uetomi and Y. Minowa : Mitsubishi Denki Laboratory reports, 9 (1968) 197.
- 2) M.Oyamada et al., : paper presented at this conference.

Fig.l Frequencies corresponded to the peaks