IMPROVED STABILITY OF INJECTION BUMP WAVEFORMS AT NewSUBARU

Takahide Shinomoto^{#,A)}, Satoshi Hashimoto^{B)}, Yasuyuki Minagawa^{A)} Shuji Miyamoto^{B)} ^{A)}JASRI/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198

^{B)}LASTI/NewSUBARU, University of Hyogo, 1-1-2 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1205

Abstract

The stability of bump magnets is one of the most important issues for the stable top-up operation of electron storage rings. We have been real-time monitoring of bump waveforms using a bump waveform recorder on NewSUBARU. Misfires of bump magnets recorded were about ten times a day. The main reason of misfires was occasional fault of one of timing modules. By replacing the troubled module, misfires disappeared and deviation of timing jitter was greatly improved.

NewSUBARU放射光施設における入射バンプ波形安定性改善

1. はじめに

現在、多くの放射光施設で蓄積電流の減少を補う 為に随時ビーム入射を行い、電子ビームの蓄積電流 値をほぼ一定に保つTop-up運転が採用されている。 兵庫県立大学高度産業科学技術研究所(LASTI)の NewSUBARU放射光施設でも2003年6月よりTop-Up 運転を実施しており、現在1GeV利用運転中の蓄積 電流は220mAに保たれている。表1にNewSUBARU の主要パラメータを示す。

表1. NewSUBARUの王要バフメータ				
蓄積エネルギー	0.5~1.5GeV			
入射エネルギー	1.0GeV			
リング周長	118.73m			
蓄積電流(1GeV Top-up時)	220mA			
最大入射繰り返し	1Hz			
入射効率	<90%			

蓄積電流値を一定に保ち、安定なTop-up運転を実 現する為には入射ビーム、セプタム電磁石、バンプ 電磁石等の長期間にわたる安定性が必要となる。

バンプ電磁石は電子ビームが入射されるタイミン グに合わせて入射部付近の周回ビーム軌道を一時的 にリング外側に曲げ入射ビーム軌道に近づける。バ ンプ波形の異常はビーム入射の失敗や入射効率の低 下をもたらす可能性がある。実際、NewSUBARUで はバンプ電磁石のミスファイアにより、一時的に ビーム入射が出来ない不具合がこれまでに数回発生 している。

我々はバンプ電磁石のミスファイアに伴うビーム 入射の失敗を早期に検知する為に、入射バンプ波形 データの取得、表示、監視、保存を行う事が出来る モニターシステムを開発した[1]。取得した波形 データを統計的に評価した結果、バンプ波形のピー ク高さとピーク位置の標準偏差は±1%程度である 事が解った。また1日に10回程度バンプ電磁石電源 から波形が出力されておらずビーム入射に失敗して いる事も判明した[1]。

本報告では入射バンプ波形モニターを用いたバン プ電磁石ミスファイアの原因調査とその改善、及び 入射バンプ波形のばらつきの改善結果について報告 する。

2. システムの概要

2-1 入射バンプ波形モニターシステム

入射バンプ波形モニターシステムではバンプ電磁 石電源からのモニター出力波形をサンプリング速度 2.5GS/sのオシロスコープを用いて、1波形当たり 10000ポイントで取得する。波形を取得する為のト リガー信号はビーム入射用トリガー信号を用いた。 オシロスコープで取得した波形データはLabVIEWで 開発したアプリケーションによりPCに転送されリ アルタイムに解析される。入射バンプ波形モニター システム画面を図1に示す。

[#] sinomoto@spring8.or.jp

NewSUBARUへのビーム入射は最大1Hzで行われ る為、波形データの取得、表示、監視、保存等の一 連の処理を全て1秒以内で完了させている。取得し た波形データをリアルタイムでPC上のユーザイン ターフェイスに表示させると同時に波形に異常がな いかチェックを行っている。入射バンプ波形データ に異常が見られた場合は、ユーザインターフェイス 上にアラームが表示される。全波形データはASCII 形式でPC内のハードディスクへ保存され、ファイ ル名には日時が自動的に付加される。

2-2. バンプ波形データ解析プログラム

入射バンプ波形モニターシステムで保存した大量 の波形データを統計的に解析する為に、バンプ波形 データ解析プログラム(図2)を開発した。本システ ムは入射バンプ波形モニターシステムで保存した波 形データを読み取り、各波形の立ち上り時間、ピー ク高さ、ピーク位置を計算する。またそれらの分布 を評価し、平均及び標準偏差を求める事が出来る。

3. 入射バンプ波形のミスファイア

3-1. ミスファイアの原因調査

入射バンプ波形をモニターシステムで監視すると、 4台のバンプ電磁石の波形が全く出力されない異常 (ミスファイア)が1日に10回程度発生していた。 4台全てのバンプ電磁石のミスファイアの原因とし て最も可能性が高いと考えられるのが、入射タイミ ング信号を生成している高周波NIMモジュールの不 具合である。セプタム電磁石、電子銃およびバンプ 電磁石のトリガー信号を生成しているモジュール構 成図の一部を図3に示す。

どのモジュールに不具合があるのかを特定するた めには各モジュールから出力されるデジタル信号波 形を調査する必要がある。そのために入射バンプ波 形モニターシステムのプログラムを一部変更し、専 用プログラムを作成した。バンプ電磁石のトリガー 信号を1Hzで約3000発(通常、一日の利用運転にお けるビーム入射の回数に相当)生成し、このプログ ラムを用いてバンプトリガー波形を調査した結果、 やはり10回程度の信号欠落が見られた。信号欠落の 原因となるモジュールが見つかるまで上流に向かっ て調査を行い、原因と思われるモジュールを特定す る事が出来た。

問題のあったNIMモジュールはデジテックス研究 所製の508MHz30ビットカウンター(17K32A型)で、 RFクロックが480MHz~520MHzの周波数で動作す る同期型30ビットカウンターである。このカウン ターを予備品に交換して再度、出力信号の調査を 行った結果、異常波形は全く見られない事から異常 波形の原因はこのカウンターモジュールであると判 断した。

3-2. タイミングモジュールの交換

不具合のあったカウンターモジュールをメーカー に返送し修理を依頼した結果、RF入力部のコンパ レータとクロックディバイダの故障により誤動作し ていた事、またコンパレータを長期間高周波で動作 させると断続的に信号が欠落する事が解った。また、 このカウンターは製造から10年以上経過しており現 行製品に比べ出力波形の精度が悪い為、以下のよう なバージョンアップを行った。

• 1/N出力部、M出力部に使用しているコンパレー

- タをMAX9690からMAX9691に変更。
- 最速部の初段カウンターU18をシナジー製から モトローラ製に変更。
- カウンター出力のターミネータを51Ωから100
 Ωに変更。

• 1/N出力、M出力の波形改善の為、R10とR15を 10Ωから47Ωに変更。

図3. RFタイミング信号生成モジュール構成図

3-3. バンプ波形の安定性改善評価

カウンターの交換後、1GeV利用運転中の入射バ ンプ波形を調査した結果、予想に反して依然として バンプ波形のミスファイアが見られ、発生頻度も交 換前と変わらず1日に10回程度発生していた。その 後も引き続き入射バンプ波形モニターシステムで入 射バンプ波形の監視を行っていくと、突如2010年度 第1サイクル以降は全く異常が見られなくなった。

この時期を境にミスファイアが見られなくなった 明確な原因は不明であるが、原因として可能性が高 いのはモジュール間を配線している高周波ケーブル の接触不良である。各モジュールの波形調査の際も 突然、出力信号が確認出来なくなることがあり、原 因を調べようとして配線に触れている間に正常な信 号が出力されて正常に復帰した事もあった。

また4台あるバンプ電磁石電源の内1~2台でし か異常波形が発生しない事も極まれに確認された。 この原因はタイミング信号の欠落ではなく、電磁石 電源から本当にパルス電圧が発生していないか、モ ニター出力の不具合が考えられる。バンプ電磁石が 1台でも異常波形を出力するとビーム入射が出来な いと同時に、蓄積中のビームも失う事になるが、蓄 積中のビームに影響は出ていなかった。これらの事 よりバンプ電磁石電源のモニター出力に何らかの問 題が有ったと考えられるが、現在ではこのような現 象は起こっていない。

4. バンプ波形のばらつきの改善

不具合のあったカウンターの交換前後で一日間の バンプ波形のばらつきがどの様に変化したかを表2 に示す。カウンターを交換した後、バンプ波形の立 ち上り時間、ピーク高さ、ピーク位置の統計的なば らつきは改善された。特にピーク位置のばらつきの 偏差は10分の1程度に軽減されており(図4)、不 具合のあったモジュールのタイミングジッターの影 響が大きかったことが分かった。

表2.	不具合のあったカウンターの交換前後にお
	けるバンプ波形の一日のばらつき

カウンター交換前					
	平均	偏差量	偏差(%)		
立ち上り時間(ns)	360.5	6.9	1.9		
ピーク位置(ns)	2608.2	30.9	1.2		
ピーク高さ(V)	3.7	0.02	0.5		

カウンター交換後					
	平均	偏差量	偏差(%)		
立ち上り時間()ns	359.8	5.6	1.6		
ピーク位置(ns)	2582.3	7.9	0.3		
ピーク高さ(V)	3.6	0.02	0.6		

5. まとめ

安定なTop-up運転の実現には加速器構成機器の安定性が要求されるが、NewSUBARUではバンプ電磁石のミスファイア(欠落)により、一時的にビーム入射が出来ない状態がこれまで何度か発生したことがあった。入射バンプ波形モニターを開発し、入射バンプ波形を監視した結果、1日に10回程度ミスファイアが発生している事が判明した。

ミスファイアを引き起こしている原因の1つはバ ンプ電磁石のトリガー信号を生成しているタイミン グモジュールの不具合であった。各モジュールから 出力される信号を調査した結果、不具合の発生した カウンターモジュールを特定する事が出来、交換を 行った。モジュールの交換により、ケーブルや他の モジュールの接触不良の問題が依然として残るもの の、バンプ波形のミスファイアは改善された。

また不具合のあったモジュールの交換後、入射バンプ波形の立ち上り時間、ピーク高さ、ピーク位置のばらつきの偏差が改善された。特にピーク位置に関してはばらつきが約10分の1まで向上した。

入射バンプ波形モニターシステムとバンプ波形解 析プログラムを使う事で、バンプ波形のリアルタイ ム監視、機器に生じた不具合の早期発見と迅速な対 応が可能となり、ニュースバルの安定なTop-Up運転 の実現に寄与することが出来る。

6. 参考文献

[1] 篠本考秀、他、"NewSUBARU放射光施設における 入射バンプ波形安定性評価"、第6回日本加速器学会 年会 (2009)