Current Status of the Hokkaido University Electron Linac Facility

Pulsed Electron Linac Experimental Facility, Faculty of Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628,

Abstract

We have a 45 MeV-30 μ A electron linac at the Faculty of Engineering, Hokkaido University, which has been operating since 1974. It has a very high performance pulsed-neutron source with a solid-methane cold moderator at about 17K. It is very suitable for developing neutron optical devices, such as focusing mirrors, monochromators, neutron-detectors and novel neutron instruments that make full use of such new devices. One is an energy selective neutron imaging technique; we can extract crystallographic information pixel by pixel. Also under development is a very compact small-angle neutron scattering instrument that utilizes an ellipsoidal neutron-focusing mirror.

The facility is also used for other purposes; i) we are studying short-time chemical reactions at an excited state using a technique based on pulse radiolysis coupled with a successive pulsed-laser irradiation; ii) we are developing a very fast electron-beam profile measurement system that uses an OTR screen combined with a fast-shuttering imaging device.

北海道大学電子線形加速器施設の現状

1. 電子線形加速器の概要

この施設は、45MeVの電子線形加速器(以後この 文章の中ではHU Linacと呼ぶ。)を基とした施設で あり、北海道大学大学院工学研究院運営の共同研究 施設として運営されている。写真を図1に示した。 正式名称は瞬間強力パルス状放射線発生装置である。 主として1)パルス中性子源としての利用,2)パル スラジオリシスの研究、3)ビームプロファイルの 測定手法開発に用いられている。中性子源として利 用するときには、35MeV-30µA、1kW、3µsec幅のパル ス、50ppsで運転されている。

加速器は1973年にはコミッショニングをはじめ、 1974年に完成した45MeV電子線形加速器であり、 様々な部品の老朽化はあるものの、保守作業のおか げで加速器本体はほとんどそのままの状態で安定に 稼働している。加速器本体の写真を図1に示した。 利用者側に取ってはほとんどターンキーシステムと 言って良いような状況で、大学の環境の中で研究、 教育に非常に有効に利用されている。ターゲット室

図1:45MeV電子線形加速器本体。一番奥に電子 源、その手前に3本の加速管、左側の壁から来る 導波管が見えている。

の写真を図2に示した。この右側の壁の反対側に中 性子などの利用のための実験室がある。

2. 小型加速器中性子源の草分け

加速器中性子源の開発研究の場として世界的に見 ても非常にユニークな施設である。本格的加速器 ベースの核破砕型パルス中性子源の最適化、特に 様々な冷中性子源の評価は世界に先駆けてここで行 われている。また、そのような開発研究が継続的に 行われている施設はここしかないと言っても良い状 況である。

最近では世界の最先端を行く大強度陽子加速器施 設の中性子施設が稼働を始めているが、大型施設で は研究用のマシンタイムが優先され、落ち着いてデ バイス、実験装置の開発をするには向かない。それ に対してこのような小型加速器中性子源は、ビーム ラインまわりを自由に変更することが容易であり、 場合によっては中性子パルス周期を10pps、あるい は1pps程度まで変更するようなことも容易にでき、 研究手法の開発を行う場としてますますその重要性 を増している。

さらに最近では、実験室X線発生装置に匹敵する ような小型中性子源の必要性が認識されつつある。

図2:ターゲット室。右端から入射した電子ビームは3つのビームラインに振り分けられる。中央 右側には固体メタン冷中性子源、左側にはJ-PARCの中性子源のモックアップが見えている。 中央部では熱・熱外中性子源、ラジオリシスの 実験が行われている。

このような小型線源でも、材料評価などには十分に 使用でき、さらに中性子実験装置を簡単に実験ごと に最適化出来ることから、大型施設ではやり難い研 究でもこのような施設では出来る可能性がある。例 えば最近では、装置を中性子小角散乱の運動量変化 の大きな領域を測定するような配置に最適化して使 用することで、鉄鋼材料中のナノ構造を1-2時間の 測定で十分に測定できることが確認されている。

最近になって、このような小型加速器中性子源 (cADNS: compact Accelerator Driven Neutron Source)が世界的にも注目を集めるようになってき ている。米国のIndiana大学のLENSプロジェクトが その代表的な例で、すでに運転を開始している。京 都大学でも小型陽子加速器の建設が始まっている他、 中国の精華大学でも加速器の建設をはじめていて、 北海道大学と協力して中性子線源の開発を行なおう としている。

cADNSはまた、超小型の原子炉と考えることも出 来、原子力関連の教育には最適なものである。電子 (あるいは陽子)ビームが鉛などのターゲットに照 射されると速中性子が発生する。これはUの核分裂 で発生する速中性子とほとんど同じエネルギー分布 を持つものになる。水の減速材で中性子を減速し、 黒鉛の反射体を持つので、まさに原子炉そのものと いっても良い。

HU Linacは非常に古い加速器ではあるが、小型加速器による中性子源の草分けとして、特に小型加速器に最適化された中性子源開発、中性子実験装置・ デバイス開発、cADNSで行える実験など、モデル ケースとして新たな価値が再認識されてきている。

さらにcANDSとしてこの施設の更新をどうするか という検討が始まっている。高エネルギー加速器研 究機構の加速器の専門家と、cANDSとして最適な加 速器の検討をはじめている。どの程度の中性子強度、 パルス幅が必要か、それを実現するための加速器と しては電子加速器が良いのか、陽子加速器が良いの か、ターゲット、中性子減速材の選択との関連で加 速エネルギー、電流、繰返し周波数などの検討が必 要である。実験室中性子源としてのモデルケースと なることを目標としている。

新手法である中性子エネルギー分析型 イメージングの開発

中性子を用いたイメージングは古くから用いられ ている標準的な手法である。しかし、最近になって、 パルス中性子源で中性子飛行時間法(TOF)を用い ることにより、検出器のピクセル毎の透過スペクト ルを一挙に測定することが出来、それをもとに多結 晶の結晶子に関する様々な情報を引き出すことが出 来るということが明らかになりつつある。北大では HU Linacを用いてそのような研究を行なってきてお り、開発の先頭を走ってきている。

鉄、ニオブなどの金属材料の溶接箇所の測定が行われ、図3に示すように結晶子サイズの分布イメージング、さらにはその配向角度まで分かるように

図3:溶接したNbの結晶子サイズ分布。中央部分の結晶子の大きさが大きく、緑色に見える部分が溶接部である。

なってきている。これは通常のイメージングでは溶 接箇所がほとんど見えなかったものである。この手 法は液体と固体を見分けることも出来、その適応範 囲はかなり広く、今後もさらに多くの情報が引き出 せるようになる可能性がある。

4. 様々な中性子光学素子開発に最適

また、HU Linacでは様々な中性子光学素子の開発 が行われている。

例えば6極電磁石の磁場勾配によりスピンを持つ 中性子は、そのスピン配向に依存して集束あるいは 発散する。パルス中性子源では刻々と違う速度(∝ 1/波長)の中性子磁石を通過するため、ビームが検 出器上で集束して、最もビームスポットが小さくな るのはある速度の中性子だけである。励磁電流を時 間変化させ、速度の広い範囲にわたって集束をさせ ることが出来る。簡単なLCR放電による時間変化す る電流でも、永久磁石による6極磁石と組み合わせ ることで、かなりの速度範囲のなかで一定とみなせ

図4:青い筒の部分がパルス6極電磁石の本体で ある。

るような集束をすることに成功している。これを図 4に示した。

図5に示したのはガラス基板の上にスーパーミ ラーを成膜したものを湾曲させることにより中性子 を集束するためのデバイスである。このような簡単 なデバイスでも中性子を集束させることができるが、 最近になって、10-20gというさらに弱い力で正確に 楕円筒形状に変形させることが出来ることが分かり、 1mm程度まで中性子を集束することの出来るデバイ スとなっている。

図5:中性子スーパーミラー湾曲装置。中央部に あるのがSiウエハに成膜された中性子スーパー ミラー、両側に非常に角度の浅い楔状の部分が あり、これを押しこむことでミラーが変形す る。

図6に示したのは完全結晶であるSiを湾曲して中 性子を単色化するデバイスである。X線と違って中 性子線は10cm程度のSiであれば問題なく透過できる が、Bragg条件を満たせば100%反射出来るという素 晴らしい性能を持っている。Siを湾曲させることに より、湾曲度に比例した波長分解能をもった高性能 の単色化デバイスとすることが出来る。しかし、冷 中性子を大強度で準単色化するような応用には向い ていないと思われてきた。しかし、Si結晶を0.5mm 厚にすることで、湾曲半径を2m(図の左側)あるい は0.7m(図の右側)とこれまでに考えられないよう なデバイスの基礎開発研究においてもTOFで中性子 のエネルギー変化というもう一つの次元の測定が出 来るこの施設は非常に強力な開発環境を提供できる。

さらに検出器の開発においても最適な環境を提供 できる。高分解能の検出器を開発するためには、単 位面積あたり、それなりの中性子束(>10³n/cm²/s) を持った線源で、幅広い波長領域の中性子があり、 それが校正されているような中性子源が必要である。 さらに、検出器開発がある段階になったときに直ぐ に測定できる自由度がほしい。HU Linacはまさにそ のような環境を提供でき、幾つかの検出器開発の共 同研究プロジェクトが行われている。GEMに薄くホ

図6:開発中の強く湾曲したSi完全結晶によるモ ノクロメータ。左側は湾曲半径2m、右側は0.7m のもの。Siは0.5mm厚のものを30枚重ねたもので ある。

ウ素を塗布し中性子コンバータとして用い、別の GEMで電子増幅をするタイプの高位置分解能2次元検 出器の開発がKEKで行われ、試験がHU Linacで行わ れている。さらに、中性子散乱の標準的検出器とし て用いられているHe-3ガス検出器(linear position sensitive detector, LPSD)を様々な形 状にした時の性能チェック、クエンチガスの選択な どの開発研究にも用いられている。

5. 中性子光学素子開発で変化する中性子 実験装置

このような光学素子、1mm程度の位置分解能を持 つ検出器を使うことでこれまでの常識的な中性子散 乱実験装置とは異なったものを開発することが出来 る。例えば中性子小角散乱装置に関して言えば、必 要な中性子束強度を得るためにビームの断面積は 10-20mm角が、また、試料の体積も散乱強度に比例 するため、10mm×10mm×2mm程度の試料を用いた測 定が行われている。このような大きさでも0.1度程 度の分解能で角度を測定するため、装置の全長は 10-30mが必要になっていた。

これに対し、中性子を集束できるような、例えば 回転楕円体の一部を切り取ったような中性子スー パーミラーで出来た集束ミラーを用いることにより、 試料の大きさはそのままで、装置の全長だけを約 1/10にすることが出来ることになる。これは6極磁 石を用いた中性子磁気レンズを用いることでも実現 できる。

このような発想のもとに、現在全長が2.5mとこれ までの同様の装置に比べ長さが1/10程度の装置の原 理検証実験をこのHU Linacで行い、この原理が正し いことを実証した。さらに、実用化につなげるため、 日本原子力研究開発機構に小型集束型の中性子小角 散乱装置を設置、現在コミッショニング中である。 この装置は原子炉の装置であるため、中性子を単色 化する必要があるため、図6で示したモノクロメー タを利用する予定である。さらに中性子強度を稼ぐ ために、中性子ビームの垂直速度成分を中性子ミ ラーで大きくすることで、これを進行方向の速度分 布に位相変換する原理の新たなデバイスを開発して いる。これによりビームの発散角が小さく、進行方 向の速度分布が大きい、したがって中性子強度が高 いビームを取り出すことができる。

6. パルス・ラジオリシスの研究

パルス状の放射線を試料に照射し、短寿命化学種 の生成過程を時間経過と共に追跡する「パルスラジ オリシス法」が用いられる。この手法により、放射 線が引き起こす超高速物理化学現象を、光の放出や 吸収という形で観測することが可能となる。このパ ルスラジオリシス法とレーザー照射を組み合わせた 電子線・レーザー逐次多重照射法の原理を図7に示 した。

図7:パルスラジオリシス・レーザーフラッシュ フォトリシス法

これを用いて、短寿命化学種の励起状態における 反応ダイナミクスの解明や新規反応の探索を行って いる。最近では、ピリジンの四塩化炭素溶液に対す る電子線照射によって生成した「ピリジン - Clコン プレックス」がpsecオーダーで減衰する様子や、 レーザー照射で励起されたこのコンプレックスの光 吸収が急激に減少(光ブリーチ)する様子を実際に 観測・解析を行った。また、16 nm以下の半導体加 エプロセスで用いられる次世代リソグラフィである 極端紫外光(EUV)露光源用のレジスト材料への 電子線などの量子ビームへの反応応答性を明らかに するために、産業応用に向けた研究も行っている。

加速電子のマイクロパルスごとのビー ムプロファイルを測定するための研究 開発

加速器のマイクロパルス毎のビームプロファイル

を測定するために、10nsec程度でそれを画像化出来 る装置の開発を行っている。これは図8に示すよう に、分割された透明電極を、それぞれ別々の時間に 高速でシャッタリングすることにより、非常に早く 変化している加速ビームのマイクロパルス・プロ ファイルを観測できるようにしようというものであ る。非常に反応時間の早い遷移放射光(0TR)を出 すスクリーンと、この高速撮像手法を組み合わせる ことでマイクロパルスの観測を行うことが出来る。 スクリーンに関しては、通常のものでは指向性が高 くなりすぎ、ビームプロファイルの観測が困難に なっている。このため、0TRスクリーンの表面粗さ を荒くすることにより0TR発行角度分布を大きくす る開発を行っている。これにより、カメラ側の設置 自由度が大きく増している。

スで駆動することで実現した高速シャッタリン グ回路(上)と、20nsec間隔でシャッタリング して取った画像(下)。