STUDY OF BEAM EXTRACTION BY THIRD ORDER RESONANCE FOR REFER IN HIROSHIMA UNIVERSITY

Yudai Kakiyama1,A), Shunya MatubaA), Atsushi MiyamotoB), Toshitada HoriB)

A) Graduate school of science, Hiroshima University
1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
B) HSRC, Hiroshima University
2-313 Kagamiyama, Higashi-Hiroshima, 739-0046, Japan

Abstract

REFER (Relativistic Electron Facility for Education and Research) is 150 MeV electron storage ring that belongs to Venture Business Laboratory. REFER was established in 1996 by the purpose of new light source development. Presently, REFER has only weak focusing magnets as lattice element. The beam extraction method of REFER uses energy loss by the absorber. The absorber makes beam loss to widen energy width and beam size, which brings about a problem not to be efficient of the beam extraction. Therefore, we thought about the beam extraction by a third order resonance. We need insert a focusing quadrupole magnet and sextupole magnets to induce a third order resonance. In the research, the strength of those magnets was determined. The appropriate insertion points of them were also determined. We then simulated the particle motion with Runge-Kutta method. As a result, the efficiency of the beam extraction was found to be improved greatly.

広島大学超高速電子周回装置の
3次共鳴によるビーム取り出しに関する研究

1. はじめに

広島大学ペンチャービジネスラボラトリーには超高速電子周回装置（REFER）という150MeVの電子リングがある。REFERでは、電子と結晶の相互作用を利用したX線（パラメトリックX線）生成実験が行われている。また電子線引き出しラインを持っており、取り出し電子を用いた実験も行われている。これにより、周回装置の共鳴による粒子の取り出しと、ビームの強さが大きくないという問題点をもっている。そこで、3次共鳴によるビームの変動を取り出しを考えることで、取り出し効率向上を計った。

REFERにはラディス要素として弱収束型偏向電磁石のあるもので、3次共鳴を起こすために四極電磁石と六極電磁石を挿入する必要がある。本研究では、四極電磁石の適切な個数と位置、またチューンとセクタリックスを適切な大きさにする四極、六極の磁場の強さを決めた。そして、その時の粒子の運動をルンゲ・クック法を用いてシミュレーションし、現在のビーム取り出しと比較した。また、取り出されたビームのクオリティについても議論した。

表1 REFERのパラメータ

<table>
<thead>
<tr>
<th>パラメータ</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy</td>
<td>150MeV</td>
</tr>
<tr>
<td>Ring circumference</td>
<td>13.712m</td>
</tr>
<tr>
<td>Horizontal tune</td>
<td>1.2536</td>
</tr>
<tr>
<td>Vertical tune</td>
<td>1.2536</td>
</tr>
<tr>
<td>Momentum compaction factor</td>
<td>0.6866</td>
</tr>
<tr>
<td>RF frequency</td>
<td>699.52MHz</td>
</tr>
</tbody>
</table>

1 E-mail: m060771@hiroshima-u.ac.jp
3. セパラトリクス

Horizontal tuneが1/3の整数倍に近づいたリングに六極磁石を挿入すると、3次共鳴が起こる。ビームはセパラトリクス磁石で取り出しラインへ曲げられるため、セパラトリクス磁石で粒子の位相が適切になるような挿入位置を考えた。その結果、BM1とBM2(α1)、BM2とRF空洞(α2)の間に六極磁石を挿入することにした。セパラトリクスの大きさを決める六極の磁場の強さは、ギャッタマグネットのワイヤの大きさが1mmと太いため、unstable fixed point(UFP)とワイヤ（x=-35mm）との距離を長くすることにより、ターンセパレーションを大きくする必要がある。そこで、UFPの一つをx=-17mmに設定し、磁場の強さをλ1=5.20, λ2=2.761と決めた。電磁石の長さは両方とも0.1mである。図4は、初期位置を一定間隔で与えたときの粒子の運動をセパラトリクス磁石の位置で表したものである。
プタム電磁石（60mm<x<70mm）で取り出される。z 方向には、キッカー電磁石は6mm、セプタム電磁石は5mmの幅を持っている。図6(a)に1000ターン後の1万の粒子の運動の様子を表す。図6(b)にアブソーバによって取り出された粒子のターン数のヒストグラムを表す。

図6(a) アブソーバによる1000ターン後の1万の粒子の運動の様子。赤は回転する粒子、緑はx=12mmのアブソーバに衝突した粒子。水色と紫はキッカー電磁石で戻られる前、後の粒子、青はセプタム電磁石で取り出された粒子。

図6(b) アブソーバによって取り出された粒子のターン数のヒストグラム

図7(a) 3次共鳴による1000ターン後の1万の粒子の運動の様子。緑は入射粒子、赤は回転粒子。水色と紫はキッカー電磁石で戻られる前、後の粒子、青はセプタム電磁石で取り出された粒子。

次に3次共鳴によるビーム取り出しのシミュレーショーン結果を示す。図7(a)は1000ターン後の1万の粒子の運動の様子をプロットしたものである。セパラトリックスを外れた粒子が急激に振幅を増大させ、キッカー電磁石（-45mm<x<35mm）で0.091radで戻られ、セプタム電磁石（60mm<x<70mm）で取り出されているのが分かる。このときのキッカー電磁石の位置は、アブソーバの場合より上流10段に配置されている。現在の設置場所では、左下角空間上のセパラトリックスの左下の粒子にまで戻りを与えるためである。図7(b)に3次共鳴によって取り出された粒子のターン数のヒストグラムを表す。

図7(b) 3次共鳴によって取り出された粒子のターン数のヒストグラム

6. まとめ

シミュレーションの結果から、3次共鳴によるビームの取り出し効率は30%以上が示されることが明らかである。取り出されたビームのエミッタンスは、アブソーバの方が大きくなくなっている。これにより、取り出し効率は悪くなるが、キッカー電磁石で戻されるビームを絞っているためである。3次共鳴では、キッカー電磁石で戻されるビームの角度が大きく、エミッタンスが大きくなっている。角度が大きくなる要因は、エネルギー偏差におけるフェーン変化によって、セパラトリックスの大きさが異なるためである。そこで、高周波電場を用いた強制振動（RFキック）を加え、セパラトリックスの大きさの違いを減少させることが今後の課題である。

この研究はKEKの加速器科学総合支援事業における大学等連携支援事業の援助により行われている。

参考文献


[2] 宮本 雄, 博士論文 “注性空間構造を施した3次共鳴によるビーム取り出しに関する研究”

[3] 佐川 靖, 博士論文 “超高速電子周回装置引き出し系における電子管長最適化シミュレーション”

-645-