OBSEVATION OF INSTABILITIES DUE TO 792MHZ HOM AT NEWSUBARU STORAGE RING

Shintarou Hisao¹, Takahiro Matsubara, Yoshikazu Miyahara, Satoshi Hashimoto, Yoshihiko Shoji, Ainosuke Ando NewSUBARU, Laboratory of Advanced Science and Technology for Industry (LASTI), University of Hyogo 1-1-2 Kouto, Kamigori, Ako, Hyogo 678-1205, Japan

Abstract

We observed a detail of beam behavior in the instability due to the RF cavity HOM (horizontal TM110). We determined the mode number using streak camera. We observed a complex change in the behavior of the beam in an unstable area. These modes were clearly distinguished mainly by the streak camera and the real time spectrum analyzer.

ニュースバルにおける792MHzHOMによる不安定性の観測

1. はじめに

ニュースバル電子蓄積リング^[1]は、KEK-PFと同じ タイプのSiCアブゾバーダクト付きのRF Cavity^[2]を 設置している。Cavityの主なパラメーターを表1に示 す。このRF Cavityの792MHzHOMが、しばしば利用 運転時に問題となっていた。可視光ビームプロファ イルモニター、及びTune Monitorなどから電磁場 モードが水平方向TM110の水平方向のバンチ結合振 動であることが判明した。利用運転上は2003年に detuning Angleの調整によって解決したが、2004年夏 の停止期間中にTuner(水平方向 plunger) とは別にも う一つHOM Tuner(垂直方向 plunger)を導入し^[3]、 792MHzHOMの不安定性を詳細に調べる事が可能と なった。ここでは、この不安定性による電子ビーム の振動を観測した結果を報告する。測定器は、 ニュースバルのビームライン6番に設置しているス トリークカメラ、リアルタイムスペクトラムアナラ イザー、オシロスコープ、Single pass beam position monitor等を用いた。

表:1 NewSUBARU RF main Parameters

Number of RF Cavity	1
RF Frequency (f_{RF})	499.956MHz
Harmonic Number	198
Shunt Impedance	5M Ω
Q value	28000
Coupling Coefficient of Coupler	5.5

2. 不安定性について

まずどの様なCavity条件になると792MHzHOMが 発生するかを調べた。蓄積されている全てのバンチ の振動をターン毎にストリークカメラで測定するた めにフィリングパターンを33バケットおき6バンチ モードにした。大幅なビームロスが発生しない状態 で観測を行うために電流値を20mA程度でHOMが発 生するようにx方向のChromaticityを2.9から0.74まで 下げた。ビーム振動が発生した領域は、蓄積電流値 にほとんど依存する事なく横方向のTuner Positionが 6.4mm~7.0mmの範囲であった。周波数では、

 Δ f=28.8kHz 程度であり、設計時のHOMのQ値 Q=39000を考えるとf_{HOM}/Qの約1.4倍に相当する^[2]。

Rigid Bunchを想定してのTransverse Coupled Bunch Instabilityが792MHzHOMで発生する条件を電子ビームの周波数で考えると以下の式^[4]になる。

$$f_{HOM} = f_{REV}(kM - \mu - [Qx] - m[Qs]) \tag{1}$$

ここで f_{HOM} はHOM周波数(792MHz)、 f_{REV} は周回周波数(2.525MHz)、kは任意の整数、Mはバンチ数(6)、 μ はバンチ振動モードナンバー、[Qx]はベータトロンチューンの端数部、[Qs]はシンクロトロンチューンの端数部、mは進行方向振動モードナンバーである。式(1)から計算ではバンチ振動モードナンバー (μ)が4の時に不安定性が発生すると予想される。

3. バンチ振動モードナンバー(μ)の測定

ストリークカメラの二重掃引モードを用いて不安 定性による横方向の振動を観測した結果を示す。縦 掃引(高速掃引)の行きと帰りのバンチが映り二段の 列になっている。リング中ではバンチは図中の番号 順に並んでおり、6個のバンチが入っているので1と 7は同じバンチである。

図:1 ストリークカメラの撮影結果。測定時の電流値 は32mAである。フルスケールの縦軸500ps、横軸1 µsである。左図が安定状態、右図が不安状態であ る。

¹E-mail:shinta@lasti.u-hyogo.ac.jp

不安定状態では、バンチとバンチ間の距離が一定に なっていない。また、バンチが右あるいは左に傾い ている。図中でバンチ間隔の不均一は、x方向の変 移であり、時間軸方向(RF phase)の変移は縦方向に 現れるはずだが動きはほとんど無い。

3.1 バンチの重心振動(m=0)

横方向のバンチ間隔の不均一は、水平方向の重心 振動である。図1の結果を横方向の強度分布で示す。 但し、見え易いように上段のバンチにオフセットを 加えた。

図:2 ストリークカメラの横方向の強度分布。横軸は Channelで、周回時間とx方向変移を反映する。縦軸 は強度(counts)である。実線が安定状態、破線が不安 定状態のプロファイルである。

マルチバンチの横方向の振動式(Rigid Bunch)^[4]を以下に示す。 $\Gamma_{invet} \frac{2\pi i n \mu}{1} \sim n T_{0}$ 、

Beam Signal
$$\propto \sum_{n} e^{-i\omega_{\beta}t} e^{-M} \delta\{t - T_0 + \frac{m_0}{M}\}$$
 (2)

測定したバンチは、バンチがストリークカメラに到 達した順番になっている事と初期位相がある事を含 めて式2の実数部をとり変形すると以下の式になる。

$$x(n) = A\cos\{\phi + \frac{\omega_{\beta}T_{0}}{M}(n-1) + \frac{2\pi\mu(n-1)}{M}\}$$
(3)

ここで、nはバンチ番号(図2上の番号)、T₀は周回時間、 ω_{β} はベータトロン振動数、Aは振幅、 ϕ は初期 位相である。バンチ間隔の不均一には、規則性があ りそのずれをプロットし式(3)を用いてフィットしバ ンチ振動モードナンバー(μ)を求めた。測定システ ム系の問題で安定状態でもバンチ間隔はシステマ チックに不均一性が現れているが、その分も差し引 いてプロットした。

図:3 横方向の重心振動。横軸はバンチ番号、縦軸は ずれ(Channel)である。

図4の結果からバンチ振動モードナンバー(µ)は4で あり式(1)からの予想と一致した。

3.2 バンチの傾き(m=1)

図2の不安定状態でバンチが傾いている。バンチ を縦軸20Channlずつ6つにスライスし、それぞれの 横方向の強度分布をガウスフィットし中心の動きか ら写真上におけるバンチの傾きを求めた。上段のバ ンチが左に傾く方を+として、上段と下段で縦掃引 (高速掃引)が逆向きである事から下段の傾きを逆に プロットし、式(3)のsin関数でフィットした。

図:5バンチの内振動。横軸はバンチ番号、縦軸は傾き(degrees)である。

図3と同様の周期が得られたが、大きくずれている 点がいくつかある。図3のフィットの結果とhead-tail phase^[4]からバンチの傾きを求めたが図5の実験結果 と一致しなった。また、傾きに規則則性が見つけ出 す事ができなかった。

4. 不安定領域内の電子ビームとCavity信 号の測定

不安定領域はTuner Positionが6.4mm~7.0mmの間である。Cavityがこの不安定領域のどの状態にあるかによって振動や電子ビーム寿命など電子ビームの振る舞いが複雑に変化する。Tuner Positionに対する電子ビーム寿命を測定した結果を以下に示す。

図:5 寿命の変化。横軸はTuner Position(mm)、縦軸 は寿命(hours)である。

Tuner Positionが6.8mm付近の状態で寿命が大きく延びている。この寿命が延びている時のバンチ形状をストリークカメラの二重掃引モードで撮影した。水平方向のエミッタンスが増加している事が確認でき、Touschek寿命が延びたと考えられる。

図:6 ストリークカメラの撮影結果。寿命は、左上図が1.0hours、左下図が6.3hoursである。右図は左図中の①で示したバンチの横方向の強度分布であり実線が上図、破線が下図である。

次にこの振動を周波数ドメインで測定する為、 Tuner Positionに対するCavityからのpick up信号の 792MHz付近のスペクトラムをリアルタイムスペク トラムアナライザーにてBlockモードで測定した。

図:7 Cavityの792MHz付近のスペクトラム。横軸は周 波数で中心周波数=792.1275MHz Full Span=5kHz、 縦軸は経過時間で下から上へ時間が経過しており Full Span=600msである。

測定時の電流値は、約20mAである。スペクトラムは、Tuner Positionが6.45mm付近から周波数が全幅約1~2kHzに広がり、不規則なAmplitudeの増減がみられる。寿命が長い時(④)は、増減が周期的になり、

また周波数に広がりがある時とない時の繰り返しの 細かい構造が見え、バーストの周期は約30msである。 ⑤では周期生が高くなりバースト周期は約130msと 遅くなる。④、⑤のような信号が起こっている時の 電子ビームの水平方向の振動をSingle Pass BPMで測 定した結果を以下に示す。

図:8 水平方向の振動。横軸は時間(ms)、縦軸は位置 (mVまたはmm)である。上図が④の状態、下図が⑤ の状態である。

図8と図7は、同時に測定していないので周期は完全 に一致していない。図8の上図の振動(A)が周波数に 広がりがない時で、振動(B)が周波数に広がりがある 時と考えられる。領域内でバーストの周期は異なり、 その周期が長いと寿命は延びず、damping time(約 22ms)付近で延びている。バーストとdampingが交互 に起こる事によって電子ビームが加熱しエミッタン スが増え寿命が延びたと考えられる。

5. まとめ

ストリークカメラを用いて792MHzHOMのバンチ 振動モードナンバー(µ)が4である事、不安定領域内 で寿命、振動、バンチ形状に変化がある事がわかっ た。進行方向振動モードナンバー(m)が0と1の励起 条件が近寄っており、同時に混在してバーストの周 期が変化したと推察しているが、理論計算による検 討が必要である。Tuner Positionによる不安定性の再 現性が良いのでTouchek寿命を伸ばす一手段として 使える可能性がある。

謝辞

不安定性の現象を検討するにあたって助言いただいた SPring-8 加速器グループの中村剛氏に心よりお 礼申し上げます

参考文献

[1] A. Ando, et al., J. Synchrotron Rad. 5, 342 (1998).

[2] T.Koseki, et al., Proc. of PAC'95, p.1794~1796.

[3] Y.shoji, *et al.*, "Upgading of a RF system of the NewSUBARU Storage Ring", APAC'04.

[4] Alexander Wu Chao, "Physic of Collective beam Instabilities in High Energy Accelerator", John Wiley & Sons.