# FURTHER PROGRESS IN NONLINEAR ACCELARATION THEORY FOR CYCLOTRONS

Kenji Sato<sup>1,A)</sup>, Shiro Ninomiya<sup>A)</sup>, Nobumasa Miyawaki<sup>B)</sup>, Mitsuhiro Fukuda<sup>B)</sup>, Shuji Obata<sup>C)</sup>

<sup>A)</sup> Research Center for Nuclear Physics, Osaka Univ., Mihogaoka 10-1, Ibaraki, Osaka 567-0047, JAPAN

<sup>B)</sup>Advanced Radiation Technology Center, JAERI, Watanuki-cho 1233, Takasaki , Gunma 370-1291, JAPAN

<sup>C)</sup> School of Science and Engineering, Tokyo Denki Univ., Ishizaka, Hatoyama-cho, Hiki, Saitama 350-0311, JAPAN

*Abstract:* It is possible to transform three equations of motion into a convenient form which is expressed by terms up to  $2^{nd}$  differential of variables of the Lorentz factor and angular velocity by the use of a field index of magnetic field distribution. The expression plays a vital role in a two-step nonlinear acceleration theory of spiral orbital motions in cyclotrons because this one and only equation of motion refers to both longitudinal motion and transverse motion.

# サイクロトロンの非線形加速理論の新たな展開

## 1. はじめに

サイクロトロンの二段階構成の非線形加速理論の 第一段階では、渦巻き状軌道を描きながら加速され て行くときの特殊な運動を仮想的な基準の運動とし て想定し、仮想的な基準としての高周波加速電圧の 周波数と振幅を与え、特殊な運動を実現出来る仮想 的な基準としての磁場分布を求める。第二段階では、 磁場分布と加速電圧の周波数と振幅が仮想的な基準 からずれているとして、任意の粒子の運動を、仮想 的な基準の運動からのずれとして、縦方向ずれ運動 と横方向ずれ運動とに分離して求める。このとき、 縦方向ずれ運動はエネルギーのずれの非線形関数と して求め、これより、サイクロトロンでの加速運動 の全てを知ることが出来るようになる。この枠組み は、著者の一人(K.S.)による、日本加速器学会誌 「加速器」第一巻第二号の解説[1]と同じである。

ところで、縦方向ずれ運動では、エネルギーと角 速度と位相と動径の四つの変量がゆっくりと円滑に 低速で変化するのに対して、横方向ずれ運動では、 角速度と位相と動径の三つの変量が忙しく高速で変 化し、エネルギーは縦方向ずれ運動で定まる低速の 変化のみとする。このような分離が出来る理由は、 横方向ずれ運動では位相が忙しく高速で変化し、加 速や減速が繰り返されるので、高速で相殺され、エ ネルギーは変化しないと考えて良いからである。

ところで、縦方向ずれ運動は、例えば、シンクロ トロン振動と言う加速理論に代表されるように、エ ネルギーと位相の二つの変量のみからなる連立の微 分方程式の解として与えられる。このとき、横方向 ずれ運動では位相が忙しく高速で変化することに着 目すると、その運動方程式は、エネルギーと位相の 二つの変量と、特に、位相の高階微分を含む形にな ると考えられる。従って、縦方向ずれ運動も横方向 ずれ運動も、二つの運動に共通な一つの運動方程式 の解になるべきであると考えられる。 簡単のため、円柱座標系で、磁場は動径のみの関 数とし、波乗り加速であると言うモデルと仮定を採 用し、元々の運動方程式を、全く近似することなく、 変形し整理したところ、エネルギーに等価なローレ ンツ因子と、位相の変化率に等価な角速度の二つの 変量、及び、これらの高階微分のみを含む運動方程 式が、厳密なものとして、今回、新たに求まった。

この点、「加速器」第一巻第二号[1]では、動径 とその高階微分からなる運動方程式を取り扱い、そ の結果、ローレンツ因子と角速度、及び、これらの 高階微分からなる運動方程式は、近似を多用して得 られている。そのため、近似の是非など、筆者自身 (K.S.)も混乱していたが、今回の新たな展開は簡 明であり、理解し易く、混乱の少ないものになった。

しかし、第一段階と第二段階との全てを解き切る には、なおも、一つ、式が足りないことが判明した。 上に求めたローレンツ因子と角速度、及び、これら の高階微分からなる運動方程式には磁場分布が含ま れており、元々、動径のみの関数である磁場分布を、 これらの変量で記述する必要があった。この問題は、 動径の関数である磁場分布のフィールド・インデッ クスが定数であるとすることにより解決出来た。そ の結果、新たな解法と、動径の運動を出発点とした 以前の解法との接点が明らかになったと言える。

さて、渦巻き状軌道を描きながら加速されて行く 場合、粒子は、加速間隙を、斜めに、その電場の方 向とは異なる方向に横切る。このとき、加速に寄与 しない方向の電場は、粒子を水平面内でキックし、 これは、磁場が粒子を偏向させるのと同じ効果であ る。このように、粒子の偏向は磁場と電場の二つの 効果で定まり、前以って一方を既知の量として与え ることが出来ない。こうした不定要因があっても、 運動方程式の形式として、両者の効果を含む実効的 磁場分布を定義してやれば良いことが分かった。 この論文では、以上に述べた手順を示す。

<sup>&</sup>lt;sup>1</sup> E-mail: sato@rcnp.osaka-u.ac.jp

#### 2. 元々の運動方程式

独立変数を回転数とするときの運動方程式は、 「加速器」第一巻第二号[1]と同じく五つとする。

$$\dot{\theta} = \frac{\omega_{rf}}{h} \frac{1}{1 + \frac{1}{2\pi h}\phi'} \tag{1}$$

$$\gamma' = \frac{q}{m_0 c^2} V \cos\phi \tag{2}$$

$$\dot{\theta} = c \frac{\sqrt{1 - \frac{1}{\gamma^2}}}{\sqrt{r^2 + \frac{1}{4\pi^2} r'^2}}$$
(3)

$$\gamma \dot{\theta} - \frac{1}{4\pi^2} \gamma' \dot{r}' \dot{\theta} - \frac{1}{4\pi^2} \gamma r'' \dot{\theta} - \frac{1}{4\pi^2} \gamma r'' \dot{\theta}'$$

$$= -\frac{q}{m \dot{\theta}} E_r + r\omega_B \qquad (4)$$

$$m_0 \theta 2\gamma r' \dot{\theta} + \gamma' r \dot{\theta} + \gamma r \dot{\theta}' = \frac{2\pi q}{m_0 \dot{\theta}} E_{\theta} + r' \omega_B$$
(5)

知りたい変量は $\dot{\theta}$ 、 $\phi$ 、 $\gamma$ 、rの四つなので、解 くべき式も四つで良く、(4)式を捨てることにする。 ここで、加速は電場で行われることを示すため、 (4)式×r'-(5)式×rを計算し、 $\omega_{B}$ の項を消去する。

$$\gamma' = \frac{q}{m_0 c^2} \left( r' E_r + 2\pi r E_\theta \right) \tag{6}$$

#### 3. 接線方向の電場及び法線方向の電場

粒子の進行方向である接線方向の電場を $E_t$ とし、 進行方向に垂直な法線方向の電場を $E_n$ とする。こ れらの電場と、動径方向の電場と方位角方向との電 場との間には、以下の関係が成立する。ただし、sは粒子の進行方向の距離であり、s'はsの回転数に よる微分である。なお、sは進行方向の速度である。

$$E_r = r' \frac{E_t}{s'} + 2\pi r \frac{E_n}{s'} \tag{7}$$

$$E_{\theta} = 2\pi r \frac{E_t}{s'} - r' \frac{E_n}{s'} \tag{8}$$

これらの式を(6)式に代入すると、接線方向の電場が、(2)式で与えられている γ' で定まる。

$$\frac{q}{m_0 \dot{\theta}} \frac{E_t}{s'} = \frac{1}{4\pi^2} \frac{\gamma' \theta}{1 - \frac{1}{\gamma^2}} \tag{9}$$

当然のこととは言え、法線方向の電場を直接決め る式がないことが分かる。

#### 4. 実効的磁場分布

法線方向の電場は磁場と同じく偏向の効果を持つ ので、その効果が入った実効的磁場分布を定義する。

$$\omega_B^{eff} = \omega_B - \frac{q}{m_0 \dot{\theta}} \frac{E_n}{s'} \tag{10}$$

(5)式の方位角方向の運動方程式に(9)式と(10)式 を代入すると、実効的磁場分布を含む式を得る。

1

$$2\gamma r'\dot{\theta} - \gamma' r\dot{\theta} \left[ \frac{1}{1 - \frac{1}{\gamma^2}} - 1 \right] + \gamma r \dot{\theta}' = r' \omega_B^{eff}$$
(11)

この(11)式で、r'がrに比例する形に書けるので、 (3)式と連立させると、 $r \ge r'$ のそれぞれが求まる。

$$r = \frac{c}{\dot{\theta}} \frac{\sqrt{1 - \frac{1}{\gamma^2}}}{\sqrt{1 + \frac{1}{4\pi^2} \frac{1}{\left(2\gamma\dot{\theta} - \omega_B^{eff}\right)^2} \left(\frac{\gamma'\dot{\theta}}{1 - \frac{1}{\gamma^2}} - \gamma'\dot{\theta} - \gamma\dot{\theta}'\right)^2}} \left(12\right)$$

$$r' = \frac{c}{\dot{\theta}} \frac{\frac{1}{2\gamma\dot{\theta} - \omega_B^{eff}} \left(\frac{\gamma'\dot{\theta}}{1 - \frac{1}{\gamma^2}} - \gamma'\dot{\theta} - \gamma\dot{\theta}'\right)}{\sqrt{1 - \frac{1}{\gamma^2}}} \left(13\right)$$

$$r' = \frac{c}{\dot{\theta}} \frac{1}{\sqrt{1 + \frac{1}{4\pi^2} \frac{1}{\left(2\gamma\dot{\theta} - \omega_B^{eff}\right)^2} \left(\frac{\gamma'\dot{\theta}}{1 - \frac{1}{\gamma^2}} - \gamma'\dot{\theta} - \gamma\dot{\theta}'\right)^2}} \left(13\right)$$

## 5. 加速間隙での電場の向きの影響

加速間隙での電場の向きを係数αで表す。

$$E_{gapr} = \alpha E_{gap\theta}$$
 (14)  
この向きと、(7)式と(8)式の左辺にある、動径方

向と方位角方向の電場の向きとが一致するとする。  $E_r = \alpha E_{\theta}$  (15)

この(15)式から(7)式と(8)式との関係が定まり、 (12)式のrと(13)式のr'を代入すると、接線方向の 電場と実効的磁場分布と裸の磁場分布の関係を得る。

$$2\pi \frac{q}{m_{0}\dot{\theta}} \frac{E_{n}}{s'} = \omega_{B} - \omega_{B}^{eff} =$$

$$= \frac{1}{2\pi} \frac{\gamma'\dot{\theta}}{1 - \frac{1}{\gamma^{2}}} \frac{\alpha 2\pi \left(2\gamma\dot{\theta} - \omega_{B}^{eff}\right) - \left(\frac{\gamma'\dot{\theta}}{1 - \frac{1}{\gamma^{2}}} - \gamma'\dot{\theta} - \gamma\dot{\theta}'\right)}{2\pi \left(2\gamma\dot{\theta} - \omega_{B}^{eff}\right) + \alpha \left(\frac{\gamma'\dot{\theta}}{1 - \frac{1}{\gamma^{2}}} - \gamma'\dot{\theta} - \gamma\dot{\theta}'\right)}$$

$$(16)$$

## 6. 新たな運動方程式

(12)式のrを微分すると(13)式のr'となるから、 実効的磁場分布の微分 $\omega_{B}^{ef'}$ を含む運動方程式を得る。



この式を(1)式及び(2)式と連立させて解けば良い

が、そのためには、実効的磁場分布の微分 $\omega_B^{eff}$ を ローレンツ因子と角速度、及び、これらの高階微分 で与える必要があり、次章で、それを示す。ところ で、特殊な運動を想定すれば、この式単独で、仮想 的な基準となる磁場分布を求めるための一階常微分 方程式が得られる。また、 $\gamma \ge \dot{\theta}$ の項のみを拾い上 げれば、縦方向ずれ運動の式の一つとなる。また、 この式には $\dot{\theta}$ "が含まれているので、 $\gamma$ の値を固定す ると、この式単独で、横方向ずれ運動の式となる。

### 7. 実効的磁場分布の微分

7.1 フィールド・インデックス

実効的磁場分布の微分は、(16)式を微分して求め れば良いが、そのためには、裸の磁場分布の微分  $\omega_{B}'$ を知る必要がある。そこで、フィールド・イン デックスを利用することにする。

$$K_{B} = -\frac{r}{\omega_{B}(r)} \frac{d\omega_{B}(r)}{dr}$$
(18)

このフィールド・インデックスを用いると、裸の 磁場分布の微分の式を得る。

$$\omega_B' = r' \frac{d\omega_B}{dr} = -\frac{r'}{r} K_B \omega_B \tag{19}$$

この
$$\frac{r}{r}$$
は、(12)式と(13)式より、ローレンツ因子

と角速度、及び、これらの高階微分と実効的磁場分 布とで書き表され、また、裸の磁場分布 $\omega_B$ も、 (16)式より同様であり、それらを上の式に代入する。

$$\omega_{B}' = -K_{B} \left( \frac{\gamma'\dot{\theta}}{1 - \frac{1}{\gamma^{2}}} - \gamma'\dot{\theta} - \gamma\dot{\theta}' \right) \frac{1}{2\gamma\dot{\theta} - \omega_{B}^{eff}} \\ \times \left\{ 2\gamma\dot{\theta} - \left(2\gamma\dot{\theta} - \omega_{B}^{eff}\right) - \left(\frac{\gamma'\dot{\theta}}{1 - \frac{1}{\gamma^{2}}} - \gamma'\dot{\theta} - \gamma\dot{\theta}'\right) + \left(\frac{\gamma'\dot{\theta}}{1 - \frac{1}{\gamma^{2}}} - \gamma'\dot{\theta} - \gamma\dot{\theta}'\right) - \left(\frac{\gamma'\dot{\theta}}{1 - \frac{1}{\gamma^{2}}} - \gamma'\dot{\theta} - \gamma'\dot{\theta}$$

この式を用いて実効的磁場分布の微分を求めるに は、(16)式の右辺の二つの式を微分すれば良い。し かし、その式はかなり長いので、ここでは割愛する。

## 7.2 実効的磁場分布の微分の別種の表現

(16)式の微分からして、 $\omega_{B}^{ef'}$ は $\gamma''$ や $\dot{\theta}''$ に比例す る項を含んでいる。従って、実効的磁場分布は  $\omega_{B}^{eff} = \omega_{B}^{eff} \left( \gamma, \dot{\theta}, \gamma', \dot{\theta}' \right)$  (21) と書けるとして良いであろう。これを微分して  $\omega_{B}^{eff'} = \gamma' \frac{\partial \omega_{B}^{eff}}{\partial \gamma} + \dot{\theta}' \frac{\partial \omega_{B}^{eff}}{\partial \dot{\theta}} + \gamma'' \frac{\partial \omega_{B}^{eff}}{\partial \gamma'} + \dot{\theta}'' \frac{\partial \omega_{B}^{eff}}{\partial \dot{\theta}'}$  (22) と言う式を得る。この式は第一段階で使用する。

## 8. まとめ

ローレンツ因子と角速度、及び、これらの高階微 分のみで表された運動方程式として、(17)式が求 まった。その式に現われる実効的磁場分布の微分は、 (22)式で与えるか、または、(16)式の微分で求まり、 そのとき、裸の磁場分布の微分はフィールド・イン デックスを一定として、(20)式で与えられることを 示した。いずれの式も、モデルと仮定とを必要とす るが、近似のない厳密なものである。この解を用い て、(12)式より動径を計算すれば、渦巻き状軌道を 描きながら加速されて行く運動を知ることが出来る。 なお、第一段階で、実効的磁場分布を求めるため の、ローレンツ因子を独立変数とする、独立変数が 陽に現われる、一階非線形常微分方程式は、「加速 器」第一巻第二号[1]に示したものと同じ形になる。

#### 参考文献

 [1] 佐藤健次. サイクロトロンにおけるシンクロトロン振動 - サイクロトロンの非線形加速理論 -. 日本加速器 学会誌「加速器」Vol.1, No.2, 2004 (79-97).