Numerical study on the undulator of KU-FEL

Toshio Fukui, Yoko Nakai, Heishun Zen, Kohichi Kusukame, Toshiteru Kii, Kai Masuda, Hideaki Ohgaki, Kiyoshi Yoshikawa, Tetsuo Yamazaki Institute of Advanced Energy, Kyoto University Gokasho, Uji, Kyoto 611-0011, Japan

Abstract

We have constructed KU-FEL system for 4~13 µm FEL oscillation for bio/chemical energy researches which consists of a thermionic RF gun and a 3-meter accelerating tube at the Institute of Advanced Energy, Kyoto University. A 30 MeV electron beam has been successfully accelerated and studies on the beam characterization have also been carried out. In parallel, evaluation of an FEL oscillation in KU-FEL has been performed. We will report our present expectations and future visions about undulators in KU-FEL. The former is the numerical studies on the expected FEL gain of the existing Halbach type undulator in the KU-FEL based on experimental beam parameters. The latter is the upgrade plan of the undulator to obtain higher gain. These undulator parameters are calculated by simulation code TDA3D.

京都大学赤外自由電子レーザーにおけるアンジュレータの性能評価

1.はじめに

自由電子レーザー(FEL)は様々な分野での応用が 期待されるが、装置が大型にならざるを得ないとい う欠点があった。京都大学エネルギー理工学研究所 の自由電子レーザー(KU-FEL)では、生物学や化学 などの幅広い分野での応用が見込まれる4~13 µmの 赤外領域での波長・偏光可変FEL発振を目指し、小 型で経済的なFEL装置を建設中である。現在の装置 の概観図を図1に、アンジュレータの写真を図2に 示す。KU-FELの加速器は高周波電子銃と3mの加速 管からなっており、前年度までにほぼ建設を終える とともに、30 MeVの電子ビーム加速に成功した[1]。 現在は実験棟移転のために装置を再建設中である[2]。 この移設の際に加速器ビームラインの変更を行って おり、これまでに得られたビームパラメータと併せ て、今後のFEL発振のためには既設のHalbach型アン ジュレータの再評価が必要となっている。

そこで本稿では、まず先に得られた加速管後の ビームパラメータ[3]を基にして現状のKU-FELで得 られるFELゲインを計算機シミュレーションによっ て検証する。また現状のビームパラメータでは、既 設のアンジュレータ長1.6 mでは得られるゲインが 不足することが予測されるが[4]、一次元ゲイン計算 の場合、ゲインはアンジュレータ長の3乗に比例す ることから[5]、アンジュレータ長を伸ばす事がゲイ ンを大きくする手段として考えられる。現在のアン ジュレータを元にした改造を考えると、周期数40を 周期数50、アンジュレータ長2.0 mに伸ばすことが 可能であり、これによるFELゲインについて検証を し、その有効性を確かめる。

2 . KU-FEL

KU-FELでは2856 MHz(S-band)で駆動する4.5空洞

の熱陰極型高周波電子銃を使用し、電子銃出口で、 マクロパルス長3 µsec、最大エネルギー約11 MeVの 電子ビームが生成される。現在、マクロパルス長を 伸ばすべく研究を行っており、この経過から5 µsec 程度のマクロパルス長が期待されている[6]。加速管 までのビーム輸送系はDOG-LEGと呼ばれる形を

図1:KU-FELの概観図

図2:KU-FELのアンジュレータ

しており、45°の偏向電磁石2台とトリプレット型 四重極電磁石が配置されている。

加速管はS-bandで駆動し、有効長は2.9 mで、20 MWの高周波源により最大40 MeVまで加速可能であ る。加速された電子ビームは60°の偏向電磁石3台 とダブレット型四重極電磁石を配置した180°アーク によってバンチ圧縮され、マッチング用トリプレッ ト型四重極電磁石を通過してアンジュレータへと入 射される。

既設のHalbach型アンジュレータは旧自由電子 レーザー研究所(FELI、現大阪大学工学研究科自由 電子レーザー研究所iFEL)と東大原子力施設のリニ アックにおける発振実験の折に使用したものを ギャップ長可変にしたものである。アンジュレータ 長は1.6 m、周期数は40、K値は0.95~0.17である。

3.計算方法

3.1 ゲインの計算方法

KU-FELでのFELのゲインを計算するために、軸 対称3次元モデルシミレーションコードTDA3D[7] を用いた。表1は加速管出口の実験値を基にして、 アンジュレータ入射直前までをPARMELA[8]で計算 した電子ビームパラメータである[3]。KU-FELが加 速可能な25 MeV、30 MeV、35 MeVの三種類の電子 ビームが入射された場合について計算を行った。ま た、アンジュレータのK値に関しては、電子ビーム のパラメータから、ある程度ゲインが確保できるK 値の大きな0.60、0.70、0.80、0.90、0.95の5種類に 関して計算を行った。

表1:電子ビームのパラメータ

エネルギー	25-35	MeV
ピーク電流	40	А
規格化エミッタンス(x)	11	π mm-mrad
規格化エミッタンス(y)	10	π mm-mrad
エネルギー幅	0.5	%
x 方向ビーム半径	0.57	mm
y 方向ビーム半径	0.82	mm

3.2 FELゲインの飽和に関する計算方法

TDA3Dのオリジナルの計算コードでは、光が複数回往復する場合には対応していないため、電子 ビームが一回通過した場合の出力として得られる レーザー強度から、光損失分を差し引いた値を次の 行程の初期レーザー強度として入力し、これを繰り 返し計算したものを、KU-FELで得られる光共振器 内の往復回数に対するレーザーパワーとして計算し た。今回の計算では光損失を10%と仮定した。KU-FELの装置の条件では光共振器の最小共振器長は 3.57 mであり、この場合1 µsecで42回ミラーを往復 できる[9]。KU-FELでは4~13 µmでのFEL発振を目 指しているが、長波長領域では比較的高いゲインが 得られるため、波長が最も短く且つ大きなゲインの 得られる電子ビームエネルギー35 MeV、アンジュ レータのK値0.95の場合に関して、現状のマクロパ ルス長3 µsecと、今後の高周波電子銃の改善により 期待される5 µsecでFELゲインの飽和の可能性を検 討する。

4.計算結果および考察

4.1 既設のアンジュレータ(1.6 m)

FELゲインの計算により、25,30,35 MeVの各電子 ビームに対して図3の結果が得られた。既設の Halbach型アンジュレータでは、6~12 μm波長帯域 においては40%以上のゲインが得られることがわか る。また、電子ビームエネルギー35 MeV、K値0.95、 発振波長6.11 μmでの光共振器内の往復回数に対す るFELパワーは図4のようになる。FELパワーが飽 和するためには約150往復必要であり、現在のマク ロパルス長3 μsecではFELパワーの飽和は不可能だ が、5 μsecに改善されれば、わずかながらFELパ ワーの飽和が見込まれる。

図3から、K値が減少するとゲインが急激に低下 していることがわかる。すなわち、K値が0.1減少 (ギャップ長が平均1.9 mm増加)するとゲインは約 10%減少している。KU-FELの電子ビームの性質を 考慮すると、発振波長選択の際にはアンジュレータ のギャップ長の調整は発振波長の微調時にのみ留め、 電子ビームエネルギーの調整により行う必要がある。

図3:1.6m既設アンジュレータのピークゲイン K=0.60, 0.70, 0.80, 0.90, 0.95

4.2 延長したアンジュレータ(2.0 m)

前節と同様の計算によって、25,30,35 MeVの各 電子ビームに対して図5の結果が得られた。2.0 m に延長したHalbach型アンジュレータでは、6~12 μm波長帯域において55%以上のゲインが得られ、 1.6 mのときよりも17%程度ゲインが向上することが わかる。6.11 μmでの光共振器内の往復回数に対す るFELパワーは図7のようになる。この図より、 FELのパワーが飽和するためには、約90往復が必要 であり、現在のマクロパルス長3 µsecでもFELの飽 和が達成可能であり、マクロパルス長が5 µsecに改 善されれば十分に安定なFEL発振が期待できる。す なわち、現在のアンジュレータを2.0 mに改造する 事で、KU-FELを用いて6~12 µmの波長域における 安定なFELが発生可能となることが分かった。

図4:1.6 m既設アンジュレータでのレーザーパ ワーの飽和の様子

図6:2.0 mに延長したアンジュレータでの レーザーパワーの飽和の様子

5.結論と今後の課題

KU-FELでのFELのゲインと、FELゲインの飽和に 関する計算を計算機シミュレーションにより行った。 この結果、現状のビームパラメータの下では、既設 のHalbach型アンジュレータでは6~12 μmの波長帯 域においてFELのゲインが40%程度であり、FELの 1飽和のためには十分でないことがわかった。この状 況を改善するための方策として、アンジュレータ長 を1.6 mから2.0 mに延長することを考えて、同様の 計算を行った結果、アンジュレータ長が2.0 mであ れば6~12 μmの波長帯ではゲインが55%程度となり、 6~12 μmでのFELの飽和が十分に可能であることが わかった。また、KU-FELの電子ビームパラメータ の特性から、主に電子ビームのエネルギーを変化さ せることで発振波長を調整し、アンジュレータの ギャップ長による調整はその微調整に使う必要があ ることがわかった。

今後の課題として、まず既設アンジュレータのみ を使用する場合は電子ビームの改善と光共振器の工 夫が求められる。さらに偏光可変FEL発振を目指す ために、ヘリカルアンジュレータの設計を行う予定 である。

参考文献

- K. Masuda, et al., Proceedings of the 2004 FEL conference, (2004).450.
- [2] T. Kii, et al., Proceedings of the 2004 FEL conference, (2004).447.
- [3] H. Ohgaki, et al., Proceedings of the 2004 FEL conference, (2004).454.
- [4] H. Ohgaki, et al., NIM A507 (2003) 150.
- [5] Charles A. Brau: Free-Electron Lasers. (Academic Press, Inc, 1990) Chap6.
- [6] Y.Nakai, et al., "Improvement of the performance of thermionic RF gun by controlling RF power" in these proceedings.
- [7] J.S. Wurtele T.M. Tran. Computer Physics Comm., Vol.54, p.263, 1989.
- [8] Loyd M. Young, James H. Billen : LA-UR-96-1835 (2002).
- [9] 留高烈:京都大学エネルギー科学研究科エネルギー応 用科学専攻修士論文(2003)