Development of Pillow Sealing for J-PARC Hadron Beamline

Yutaka Yamanoi^{11,A)}, Keizo Agari^{A)}, Tetsurou Nakamura^{B)}, Motosada Kaneko^{B)}, Kenzaburo Sugisaki^{B)}, Takashi Yoshida^{C)}

A) High Energy Accelerator Research Organization (KEK)
 1-1 Oho, Tsukuba, Ibaraki, 305-0801
 ^{B)} MIRAPRO CO.,LTD.,
 1100 Anadaira, Sutama-cho, Kitakoma, Yamanashi, 408-0111
 ^{C)} SOKEN INDUSTRIES, LTD.,
 1-103-55 Yoshinodai, Kawagoe, Saitama, 350-0833

Abstract

This paper reports the design of a pillow sealing device used in a hadron beamline at J-PARC. This pillow sealing used in this beamline is composed of all the metals, and has strong hard performance to radiation damage. Both ballom pillows and flat other party flanges by which a balloon pillow touches are processed to the specular surfaces. The leakage of air was able to be reduced to 1/100 compared with the past one by polishing for the roughness on the surface to about 4nm by the electric chemical buffing(ECB). It was found to solve it by the structure that the swelling of the balloon was able to be enlarged, though a flat flange occurred the deformation like a big twist because of the heat stress.

J-PARCハドロンビームラインのためのピローシールの開発

1. はじめに

高エネルギー加速器研究機構(KEK)と日本原子 力研究所(JAERI)は、大強度陽子加速器施設(J-PARC)を茨城県東海村に建設している。ハドロン ビームラインは、この加速器施設群の中の一つで、 50GeVに加速された一次陽子ビームを取り出して原 子核実験、高エネルギー素粒子実験を行うハドロン 実験室のビームラインである。

現在、KEK-12GeV PSのビームラインが1.5kW(遅い取りだし時)であるのに対して、J-PARCでのビーム強度は750kW(50GeV-15µA)を計画しており、両者を比較するとビームパワーで500倍になる。従って、ビームロスを極端に少なくすると共に、今以上にビームラインに設置する機器要素は放射線劣化に対して強く、また、メンテナンス機能をよりシンプルにして短時間に行えなくてはいけない。

ピローシールは、1990年に北カウンターホールを 建設するにあたりPSI(Paul Scherrer Institut)と同型 のピローシールを手本にハドロンビームラインに導 入し^[1,2]、高い耐放射線性を有し、狭いドリフトス ペースに遠隔で接続出来るビーム輸送の真空ビーム パイプの接続装置として使用してきた。

2. ピローシールの構造

ピローシールは加圧することで膨らませることの 出来るリング状の二重のダイヤフラムと、その膨ら んだダイヤフラムを押しつけるベローズ空間からな る。真空パイプ側のフランジはフラットな鏡面で構 成され、フォイルベースとベローズが入る30mm程 度の隙間があれば、10⁵Paの真空空間を接続できる。 ゴムや金属のガスケットシールを必要とせず、すべ てがSUSなどの耐食性のある金属材料で構成され、 大きな口径や楕円形などの変形形状にも適応出来る。 また、その構成材料からアウトガスを小さくでき、 数百度のベーキングも対応可能である。ピローシー ルの基本構造を図1に示す。

図1 ピローシールの構造断面図

¹ yamanoi@post.kek.jp

3. ピローシールのリーク量

外部からのリーク量Q₂は、次のように見積もられる。

リーク量 Q_1 、 Q_2 、とコンダクタンスCとの関係式は、 $Q_1=C_1(P_0-P_1)$ $Q_1-Q_2=P_1S_1$ $Q_2=C_2(P_1-P_2)$ $Q_2=P_2S_2$

である。それぞれのダイヤフラムのコンダクタンス C_1 、 C_2 が同形、同材質であるとき、 $C_1=C_2=C$ と見な せる。また外部から真空パイプ中へ漏れ入る量 Q_2 は、 排気速度の大きさ $S_3>>S_1>C$ を考慮すると

$$Q_2 = \frac{C^2}{S_1 S_2 + S_1 C + S_2 C + C^2 + S_2 C} \times P_0 S_2 \cong \frac{C^2 P_0}{S_1}$$

と表される。

従って、外から流入するQ₂を出来るだけ小さくす るには、ダイヤフラム自身のコンダクタンスCと二 重ダイヤフラム間隙の中間排気速度S₁が性能を決め る重要なパラメーターである。S₁は構造設計上出来 るだけ大きくなるように配管断面積を大きくし、排 気ポンプを近づけるなどの工夫が必要である。

4. 面粗度とリーク量

ピローシールのダイヤフラムは応力や熱変形した 対向するフランジ鏡面に対応出来ると共に鏡面に付 着した粉塵やキズに対して、空気の侵入する経路を 覆い尽くすことが出来る特徴がある。^[3]しかし、 SUS等で形成された金属鏡面に対して、同様にSUS フォイルのダイヤフラムを押しつける際には、押し つける圧力、接触幅、両表面の面粗度がコンダクタ ンスCの大きさに左右する。Roth^[4]は、次のような 関係を示した。

 $C=34A^{2}(L/w)exp[-3F/(LwR)]$

A:面粗度(Ra)
L:ダイヤフラム周長
w:ダイヤフラム幅
F:押し付ける圧力
R:フォイル材質の塑性変形耐力

今回この面粗度Aを小さくするための加工をおこ なった。ピローシールは、実機に使用する可能性の 高いSUS304を用い、□80mm×t0.2mmのBA材と2B 材をサンプルとして、それぞれを複合電解研磨と電 解研磨を施し、表面の粗さを測定した。(図3)

図3それぞれ左から(BA-ECB-1)素地BAで複合電 解研磨、(2B-ECB-1)素地2Bで複合電解研磨、

(BA-EP-2)素地BAで電解研磨120sec、(2B-EP-2)素地2Bで電解研磨120sec、(BA-無-3)素地BA で処理無し、(2B-無-3)素地2Bで処理無しを示す。

	素地	電解研磨	複合電解研磨
BA	22nm	14nm	3.8nm
2B	81nm	41nm	4.6nm
差	59nm	27nm	0.8nm

BA材と2B材を比較すると素材の時点で59nmの 粗さの差があるが、複合電解研磨後は0.8nmと差は ほとんど見られない程度に小さく加工出来ることが 分かった。

最も面粗さの小さく出来たサンプルBA-ECB-1での表面特性は、

平均面粗さ[Ra] 3.831nm 最大高低差[P-V] 4.749nm

自乗平均面粗さ[RMS] 4.911nm

表面積率[S ratio] 1.00012

であり、この表面処理を採用した。

ダイヤフラム幅20mmの試験用ピローシールでの

Heリーク量として、4.1E-7 Pa・m3/secを得ている。 また、相手側のフランジの表面粗度も同等に仕上 げられることが理想であるが、相手側フランジはコ リメーター等を収納する大型の真空容器であること が一般的である。従ってそのため相手側のフランジ は切削品のECB 処理の為、ダイヤフラム部とは異 なり材質の硬度差もリーク量をコントロールする要 素となると考えられ今後の課題である。

4. ダイヤフラムの膨らみ形状

通常真空フランジの設置は、相対するフランジの 平行度、同真度、平面性が問題になる。

ピローシールのメリットは二つある。

- ダイヤフラムをつなぐ二重ベローズを収縮拡 張することで、対向フランジ間の距離の変化、 傾き、中心軸のズレに対しても対応できるこ と
- 2)ダイヤフラム幅のサイズ程度の熱・応力のう ねり変形に対しては、ダイヤフラムの膨張高 で吸収対応出来ること

である。

ダイヤフラムは、耐食性、耐久性があるSUSフォ イルをベースフランジに溶接して固定される。ベー スフランジはPSIで採用されているものやKEK-PS北 カウンターホールに設置した従来型では、溶接によ るビートが設置フランジを傷つけず、膨張時に充分 な接触幅を発生させるために、予め6度の底辺角度 を持たせた台形ベースで作られ、幅22.5mm、加圧 0.3Mpaの時、およそ0.14mmの高かさを得ていた。

ハドロンビームラインに設置された対向フランジ は、ビームによる放射化発熱によって図4のように 周方向にうねりを生じる。予想される75℃になると き100度位置と350度位置でのうねりの差は0.2mm程 度に変形することが予想され、従来型のフォイル固 定方法ではこの変形を吸収出来る充分な高さが得ら れない。

図4相手側のフランジの変形量

そのためより高さを得るために、幅20mm、厚さ 0.2mmの試験フォイルは、ドーム上に膨らむための 構造剛性が小さく出来ると予想された0度角度で溶 接した。溶接方法はビート高さを小さく抑え、溶け 込み体積が小さいと考えられるLBW溶接と十分な注 意を払ったTIG溶接したフォイルを用い圧力-膨ら み高さを比較した。(図5)

図5 ダイヤフラム厚さ0.2mmの膨らみ形状

横軸はダイヤフラム内圧力、縦軸は高さを表す。 両者ともこの形状で0.3Mpaの時で0.3mmの高さを達 成し十分にフランジのうねりを膨らみで吸収出来る。

一度目の加圧時に0.2mm程度の残留する塑性変形 を施すことで二度目の加圧時でさらに1.5倍程度の 膨らみ高さを達成できることも確認した。

また、フォイル厚さで変形量を制御することも可 能と考えられるが、薄く大きい幅のフォイルが常に 購入可能とは保障されず、薄くするとECB処理し難 くなるため、高さはダイヤフラム幅と圧力でコント ロールすることが妥当であると考えられる。

5. 予定

今後、対向するフランジとダイヤフラムの面圧を 解析しシール機構の性能向上を図る。また、実機相 当の大型の二重ダイヤフラムでのHeリーク量、中間 排気の効果を確認し、直立させた状態での前倒れ、 リーク量を測定する計画である。

6. 謝辞

本研究は、日本学術振興会 科学研究費補助金, 基盤研究 (B) (2) No. 15340084, 基盤研究 (A) (2) No. 17204019によって支援されている。

参考文献

- [1] SIN, Jahresbericht (1984), JB11-18
- [2] Y.Yamanoi et al., KEK Preprint 89-165, December (1989)
- [3] H. Ishimaru, J.Vac.Sci.Technol.A3(3), May/Jun 1985, 1703-1706
- [4] A. Roth, Vacuum technology, Fourth impression 1998, ISBN 0-444-88010-0 (Elsevier)