DEVELOPMENT OF A CODE FOR ANALYZING RESONANT MODES

Takuya Natsui *, Shinji Endo, Shogo Miyata, Masashi Yamamoto Akita National College of Technology 1-1, Bunkyo-cho, Iijima, Akita, 011-8511 Japan

Abstract

Designing the accelerating cavity, we need to know its field distribution and resonant frequencies. For this purpose, we are developing a solver to analyze the high frequency electromagnetic field in resonant cavities. Accelerating cavities are generally cylindrical symmetry, so that we are developing the solver which can calculate fields in the cavities via a 2D finite element method (FEM). The developed solver is very accurate, since we used second-order and curve elements. We compared the calculation result with the theoretical estimate. In this paper, we will offer the fact that our accuracy is better than 10^{-9} .

空洞共振モード解析コードの開発

1. はじめに

加速空洞を設計する場合,共振周波数および電磁場分布を精度よく求めなくてはならない.とくに,共振周波数は高い精度が要求される.多くの加速空洞は,軸対称構造なので2次元問題として取り扱うことができる.我々はこれらを解析するため,2次元有限要素法の高周波電磁場解析プログラムを開発した.

我々が開発したプログラムでは解析の精度を上げ るため2次要素を用いた.これにより,電磁場は要 素内で2次の項まで表現でき,1次近似である1次 要素に比べ格段に精度は高くなる.また,直線で囲 まれた三角形要素を用いると,境界が曲線のときに 形状誤差が計算精度を落とす原因になる.これを防 ぐため,曲線境界では曲線要素を用いるようなプロ グラムを作成した.

有限要素法の解析では,解析領域を要素分割する メッシュ生成プログラムも必要になる.本研究では, 2次要素と曲線要素に対応したメッシュ生成を行う プログラムを用意した.

2次要素と曲線要素を用いた有限要素法で共振モードを計算するプログラムを開発し,その精度を調べたので報告する.

2. 計算方法

2.1 メッシュ生成

有限要素法では,領域を要素と呼ばれる小さな三 角形に分割して解析を行う^[2].我々のプログラムで は,2次要素を用いた.1次要素では1要素に3節 点が割り当てられるが,2次要素では6節点が割り 当てられる.この要素は,三角形の形で,各頂点と 各辺の中点が節点となっている.三角形要素と節点 を図1に示す.図中の黒い点が節点である.

また,境界条件が曲線であった場合には,三角形 の一辺が2次曲線となる,曲線要素を用いた.これ により,曲線の境界でも高い精度で近似できる.曲線要素と節点を図2に示す.

図 1: 三角形要素と節点 図 2: 曲線要素と節点

メッシュは三角形要素と曲線要素を組み合わせた 要素分割となる.曲線境界に接している要素のみ曲 線要素となる.図3に実際の要素分割の例を示す.こ の図は,球形の領域を解析する場合の要素分割を表 している.境界が曲線の場合もそれに沿って節点が 配置されるようになっている.

実際には,さらに細かく要素分割を行い節点を増 やして解析する.

我々が用いたメッシュ生成プログラムは形状を決め ると任意のメッシュサイズに自動的に要素分割を行い,要素データと節点データを出力する.このデー タは曲線境界に接する要素のみ曲線要素を使ったメッ シュとなり2次要素に対応いている.

2.2 有限要素法

高周波磁場解析を行うには,ヘルムホルツ方程式 を解いて,共振周波数および電磁場分布を求めるこ ととなる.ヘルムホルツ方程式の固有値を求めるこ とで,共振周波数が求められる.

プログラムでは,式(1)の汎関数を離散化し停留値 を求める有限要素法を用い,共振周波数および固有

^{*} E-mail: s16005@cc.akita-nct.ac.jp

図 3: メッシュ分割と節点

モードの電磁場分布を求める.

$$J[H_{\theta}] = \iint r \left[\left(\frac{\partial H_{\theta}}{\partial r} \right)^2 + \left(\frac{\partial H_{\theta}}{\partial z} \right)^2 + 2 \frac{H_{\theta}}{r} \frac{\partial H_{\theta}}{\partial r} + \left(\frac{H_{\theta}}{r} \right)^2 - \lambda H_{\theta}^2 \right] dr dz \quad (1)$$
$$\lambda = \left(\frac{\omega}{r} \right)^2$$

この固有モードが磁場の分布になっている.現状で は軸対称構造の TM₀ モードを解析するので磁場は θ 方向のみの成分を持つ.

式 (1)の汎関数は,積分範囲を要素ごとに分けて計 算する.また,求める関数 H_{θ} は区分多項式で近似 し,2次要素jでは2次式である.一つの要素内での 区分多項式は以下の式で表される.

$$H_{\theta} = u_1 g_1(r, z) + u_2 g_2(r, z) + u_3 g_3(r, z) + u_4 g_4(r, z) + u_5 g_5(r, z) + u_6 g_6(r, z)$$
(2)

 u_i は節点iでの $H_ heta$ の値であり, $g_i(r,z)$ が形状関数と呼ばれる2次関数である.

このように,積分範囲を要素に分け,その中での 関数を2次関数で近似し計算する方法が有限要素法 である.

2.3 数値計算法

ここでの問題は,各節点での値を求めるための一 般化固有値問題に帰着する.固有値が共振周波数に 対応し,固有ベクトルが節点の磁場 H_{θ} となる.

この固有値問題の次元数は節点数に等しくなるため,大規模行列の固有値問題を解くこととなる.しかし,この行列は要素がほとんどが0であるスパース行列である.固有値問題の解法には共役勾配法を用い,最低次の固有モードと固有値を求めた.共役勾配法は大規模スパース行列の一般化固有値問題の

解法として適している.共役勾配法での解法を以下 で説明する.

一般化固有値問題は,(3)式で与えられ, λ は(4)式のの Raylaigh 商から求められる.

$$Ax = \lambda Bx \tag{3}$$

$$\lambda = \frac{(\boldsymbol{x}, \boldsymbol{A}\boldsymbol{x})}{(\boldsymbol{x}, \boldsymbol{B}\boldsymbol{x})} \tag{4}$$

共役勾配法ではこのような固有値問題の最小固有値 を求められる.(3)式の最急勾配方向g(x)を以下に 示す.

$$g(x) = \frac{2(Ax - \lambda Bx)}{(x, Bx)}$$
(5)

適当な α_i を用いれば,固有ベクトルは以下のように反復法で求められる.

$$\boldsymbol{x}_{i+1} = \boldsymbol{x}_i + \alpha_i \boldsymbol{p}_i \tag{6}$$

$$p_i = -g_i + \beta_{i-1}p_{i-1}$$
, $\beta_{i-1} = \frac{(g_i, g_i)}{(g_{i-1}, g_{i-1})}$ (7)

このように一般化固有値問題を解き,共振周波数 と磁場分布が計算できる.磁場がわかれば,その回 転をとることによって電場分布も知ることができる. 電場は以下の式で表される.

$$\boldsymbol{E} = \frac{i}{\epsilon_0 \omega} \nabla \times \boldsymbol{H} \tag{8}$$

θ方向の磁場だけが存在するときの回転は以下の式になる.

$$\nabla \times \boldsymbol{H} = \left(-\frac{\partial H_{\theta}}{\partial z}\right)\hat{\boldsymbol{r}} + \left(\frac{H_{\theta}}{r} + \frac{\partial H_{\theta}}{\partial r}\right)\hat{\boldsymbol{z}} \quad (9)$$

3. 計算結果

3.1 誤差

作成したプログラムの計算誤差を調べるために解 析解との比較を行った.具体的には図3に示したような1/4の球形空洞の共振周波数を計算した.

半径 1m の球形空洞の固有値の解析解は , $\left(\frac{\omega}{c}\right)^2$ = 7.527929582 である.この値とプログラムの計算結果を比較した.加えて,SUPERFISH ^[1]の誤差とも比較した.

ここでの、誤差 δ は

$$\delta = \left| \frac{\lambda_0 - \lambda}{\lambda_0} \right|$$

$$\lambda : 計算値 \quad \lambda_0 : 解析値$$
(10)

とした.

求められた誤差のグラフを図4に示す.ここで,メッシュサイズとは三角形要素の一辺の長さである.図からわかるように SUPERFISH は平均メッシュサイ

ズの2乗で誤差が減少しているが,作成したプログ ラムは4乗で誤差が減少している.つまり,メッシュ 面積で考えると SUPERFISH は1乗で,作成したプ ログラムは2乗で誤差が減少している.このことか ら,プログラムは意図したとおりに動作していると 推測できる.

図 4: 計算結果の誤差のグラフ

ただ,メッシュサイズが0.013mより小さくなった あたりで,それまで直線的に変化してきた誤差の値 が直線からはずれてしまっている.つまり,今の場 合は 2×10^{-10} 程度が誤差の限界である.この限界 がなにに起因しているのかは不明である.

計算時間は,もっとも計算精度が高かった0.014mの メッシュサイズで,200sec ほどだった.ここで,CPU は Pentium4の2.8GHzを使用した.

3.2 計算結果

球形空洞の計算結果を例として図5に示す.軸上, すなわちz軸上ではディレクレ条件,それ以外の境 界ではノイマン条件を与えた.この例では,節点数 3430,要素数1669で計算している.共振周波数の計 算精度は1.3×10⁻⁸程度であった.

図5は磁場の強さを色で表し、その結果から得られる電気力線を線で表している.外周部が磁場がもっとも強いところである.

4. まとめ

2次要素を使った有限要素法のプログラムを作成 し共振周波数の誤差はメッシュサイズの4乗(要素 面積の2乗)に比例し,精度が2×10⁻¹⁰程度である ことを確認した.また,曲線要素を使っているので, 複雑な形状においても精度の高い計算結果が得られ るだろうと考えられる.

図 5: θ 方向の磁場の強さと電気力線

球形空洞の共振周波数と固有モードを求める計算 にかかった時間は, CPUが Pentium4の2.8GHzの計 算機を使ったとき,200sec ほどで 2×10^{-10} 程度の 計算精度が得られた.

今回は,単純な形状での精度検証だったが,今後 もっと複雑な形状での精度検証も必要であると考え ている.

また,精度検証のところでも触れたがメッシュを 細かくするとあるところでそれ以上精度が上がらな くなるところがある.この原因は不明だが,おそら く丸め誤差によるものと予想されるので計算の有効 桁数を増やせばさらに精度の高い結果が得られると 考えている.

今後の課題として,今のところは周期的境界条件 が扱えないのでこの条件を取り入れることがあげら れる.また,アダプティブメッシュの採用も考えた い.これができれば,より効率よく精度の高い結果 が得られると予想できる.

今の段階では,計算結果の表示は OpenGL を使い 磁場分布,電場分布などを表示できるようになって る.また,それをビットマップ形式で保存でき,ま た,eps形式で図を描くこともできるようになってい る.しかしながら,実用的なソフトとして使うには, まだまだインターフェイスの部分で問題があるので, 今後は,GUIを充実させて使いやすいようにしてい きたいと思う.

本研究で作成したプログラムはすべて C++言語で 組まれている.

参考文献

- K.Halbach, et al., "SUPERFISH-Electron Optics and Gun Design", SLAC Rep. 331, October 1988.
- [2] 谷口健男, "FEM のための要素自動分割", 森北出版株式 会社, 2002.