Experimental Setup for Monochromatic Hard X-ray Generation via Compton Scattering at the University of Tokyo

Fumito SAKAMOTO*¹, Katsuhiro DOBASHI², Tatsuo KANEYASU¹, Atsushi FUKASAWA¹, Haruyuki OGINO¹, Tomohiko YAMAMOTO¹, Mitsuru UESAKA¹, Junji URAKAWA³, Toshiyasu HIGO³, Mitsuo AKEMOTO³ and Hitoshi HAYANO³

> ¹UTNS: Nuclear Professional School, the University of Tokyo 2-22, Shirakata-Shirane, Tokai, Naka, Ibaraki, 319-1188 JAPAN ²NIRS: National Institute for Radiological Sciences 4-9-1, Anagawa, Inageku, Chiba-shi, Chiba, 263-8555 JAPAN ³KEK: High Energy Accelerator Research Organization 1-1, Oho, Tsukuba-shi, Ibaraki, 305-0801 JAPAN

Abstract

Compton scattering hard X-ray source for 10-40 keV which consists of an X-band (11.424 GHz) electron linear accelerator and YAG laser is under constructing at Nuclear Engineering Research Laboratory, the University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National institute for Radiological Sciences is the host institute and the University of Tokyo and High Energy Accelerator Research Organization (KEK) are working for the development of the X-ray source. Main advantage of our scheme is to produce tunable monochromatic hard (10-40 keV) X-rays with the intensities of 10⁸-10⁹ photons/s. In addition, dual energy monochromatic hard X-ray source can be realized that generate two monochromatic hard X-ray by turn with high (up to 10 pps) repetition rate by one X-ray source. X-band beam line for the demonstration is under constructing. Here, the details of the experimental setup for Compton scattering experiment will be presented.

東大小型単色硬 X線源におけるコンプトン散乱硬 X線生成システム

1. はじめに

X線は医療、生命科学、材料科学など広い分野で 利用されている。単色X線は、既存X線応用技術の 高精度/高度化だけでなく、新しい技術への期待もあ る。2色X線CTがその例であり、これは、エネル ギーの違う2種類の単色X線を用いて、物質のエフ ェクティブな元素番号の分布を得ようとするもので あり、単色X線は必要不可欠である。しかしながら 放射光施設は一般的には高額巨大な装置であり、普 及性には難がある。

GeV程度のエネルギーの電子貯蔵リングで生成で きるX線に相当するようなエネルギーのX線を生成 可能な超小型の硬X線源を実現するための方策とし て、大強度のレーザー光と電子ビームを衝突させて コンプトン散乱により高エネルギーX線を得る方法 がある。我々は、文部科学省先進小型加速器要素技 術の普及事業(取りまとめ放射線医学総合研究所) に参画し、従来使用されて来た S-band (2856 MHz、 波長 10.5 cm)の 1/4 の波長である X-band (11.424 GHz、 波長 4.2 cm)リニアックを用いた、より小型の硬 X 線源の開発を進めている^[1-4]。 現在、図1に示す実証用ビームラインの構築を、 東京大学大学院工学系研究科原子力専攻にて進めて いる。本稿では、今年度末に計画されている、コン プトン散乱硬X線生成実験体系の詳細について報告 する。

2. X-band 小型硬 X 線源の概要

我々が提案する小型硬 X 線源は、X-band ライナッ クで加速された電子ビームを、パルスレーザーと衝 突させることにより、硬 X 線を生成させるものであ る。主要パラメータを表 1 に示す。熱カソード RF ガンで生成したマルチバンチ電子ビームは、X-band 加速管で加速され、パルスレーザー光と衝突する。 コンプトン散乱により、10⁸ photons/pulse,時間幅 10 ns (FWHM)の硬 X 線が生成される。

表1. 小型硬X線源主要ビームパラメータ

X-band Linac : E= 50 MeV (MAX), 20 pC/bunch,⁴l@unches/1usec Nd:YAG Laser : 1064 nm, 10hsec, 2 J/ pulse, 10pps X-ray yield : 1.7 x 18 photons/pulse, 5 & cV (MAX)

^{*}E-mail: saka@utnl.jp

図1:単色 X 線生成実証用 X バンドビームライン概念図

2.1 X-band ライナックビームライン

X-band 加速管については、KEK で蓄積された技術を応用している。現状では、0.7 m (84 cells)の加速管を用いて、最大 50 MeV のビームエネルギーが得られる設計となっている。図2に、現在構築を進めている X-band ライナックビームラインの光学系を示す^[2]。設計には、加速器設計プログラム SAD が用いられている。電子ビームエネルギー変動による、X線強度の揺らぎを抑制させるため、電子・レーザー衝突点(Collision Point: CP)での運動量分散関数と色収差が最小となるように設計されている。また、衝突点での電子ビームサイズは100 um (rms)であるが、この値は生成 X線強度のビームサイズ依存性のシミュレーション結果から決定したものである^[2]。

図 2: X-band ライナックビーム光学系^[2]。 β 関数(上) 運動量分散関数(中)、ビームサイズ(下)を示している。 (実線は x、破線は y、CP は電子・レーザーの衝突点を表 す。)

図3は、SADにより得られたビーム光学系を用い たビームトラッキングの結果を示している。シミュ レーションには、PARMELAを用いた。この結果か らも、電子・レーザー衝突点において、電子ビーム が 100 um 程度まで収束されていることがわかる。

図 3: PARMELA によるビームサイズ変動計算結果。実 線は x 方向のビームサイズ(rms)、破線は y 方向をそれぞ れ示している。

2.2 レーザーシステム

電子衝突用レーザーに関しては、加速器の開発に 重点を置くため、既存のパルス強度 2.5 J/pulse (二倍 高調波:1.4 J/pulse),繰り返し 10 pps,パルス長 10 nsec(FWHM),波長 1064 nm (基本波)の Q-switch Nd:YAG レーザーを採用する。ライナックの RFパル ス幅が、レーザーのパルス長に対し十分に長いこと から、X線生成の高効率化を図るためのレーザー周 回装置の原理検証を行ってきた^[5]。図 4 に、レーザ ー周回装置の概念図を示す。この周回装置の特徴は、 周回後におけるレーザー光の転送行列を単位行列に することにより、光学系の調整(レンズ位置の調整) のみで詳細なレーザースポットの位置調整が可能な 点である。この事は、コンプトン散乱実験における ビームハンドリングの点において、非常に有効であ ると考えられる。

図 4: レーザー周回システムの概念。レーザーの偏光を 利用して周回路への閉じ込めを行なっている。

これまでに、25 mJ/10 ns の低出力 YAG レーザー を用いた原理検証実験を行っており、レーザーの周 回路への閉じ込めと、詳細な位置調整を実証してき た^[6]。図 5 に周回路に閉じ込められたレーザーパル スの強度変化を示す。これにより見かけ上のレーザ 一強度が増加し、1 桁近くの X 線強度増強が見込ま れている。現在は、高出力レーザーに対する実証試 験を進めている。

図 5: 周回中のレーザー光強度。横軸に時間、縦軸にレ ーザー光強度を示す。ミラー後方に設置したバイプラナ光 電管で観測。レンズやミラーでの減衰はあるが、50 周の 周回で見かけ上のレーザー総エネルギーが約 10 倍になる ことが確認された。

2.3 コンプトン散乱硬X線生成実験体系

図6にコンプトン散乱硬X線生成のための実験体 系概念図を示す。電子ビームとレーザービームの衝 突点は偏向電磁石で囲まれた2mほどの直線部にあ り、そこには両ビームを正面衝突させるためのビー ム診断装置がある。レーザー装置は地上に設置され ており、ミラーによりピット内に輸送される。レー ザー光は下流側偏向電磁石からビームラインに入射 され、電子ビームとの衝突後、上流側偏向電磁石で 大気中に取り出され、周回路に入る。コンプトン散 乱により生成された硬X線は、下流側偏向電磁石で 電子ビームと分離され、その先の厚さ3mmのレー ザー用ミラーと厚さ100umのBe窓を貫いて大気中 に取り出され、X線検出器に入射する。X線検出器 には、有効感度領域が28mm x28mm のSi photo-diodeの使用を検討している。

衝突点に設置してある診断用チェンバーは、Wire Scanner、蛍光板、ナイフエッジが一体化した構造に なっており、電子ビーム・レーザー両方のプロファ イルと位置を計測できるようになっている。また、 このチェンバーはビーム軸方向に±130 mm の可動 ステージに設置しているため、前後の四極電磁石に 取り付けた BPM(Beam Position Monitor)と合わせて、 衝突点前後におけるビーム軌道や、正確な waist の 位置が計測可能なシステムになっている。

3. まとめと今後の予定

東大原子力専攻において、X-band 電子ライナック を用いた小型硬線源の構築が進められている。今秋 予定されているコンプトン散乱硬X線生成試験に向 け、ビームライン構築及び高出力レーザーを用いた 周回装置の実証、並びにコンプトン散乱実験体系の 詳細検討を進めている。電子ビームについては、 PARMELAを用いたビームトラッキングを更に行い、 衝突点までのビームダイナミクスについて確認して いく。レーザーに関しては、高出力レーザーを用い た周回実験を行い、光学素子の損傷等を含めた実証 を進めていく。X線検出器に関しては、Si photo-diode 以外にも調査を進め、数種類の検出器を試験したく 考えている。

実験体系の詳細設計を更に進め、今年度末にコン プトン散乱硬 X 線生成の実験を行いたい。

謝辞

この研究は、文部科学省先進小型加速器の要素技術の普及事業(取りまとめ放医研)によって進められている。また、本研究の一部は、独立行政法人科学技術振興機構の委託事業として実施されたものである。

参考文献

- [1]K. Dobashi, et al., Jpn. J. Appl. Phys. 44(2005)4A pp.1995.
- [2]F. Sakamoto, *et al.*, Proc. of the 7th Symposium on Accelerator and Related Technology for Application. (p. 1-4, 2005, June 9-10, JAPAN)
- [3]K. Dobashi, *et al.*, Proc. of 2nd Annual Meeting of Particle Society of Japan, 21P071(2005)
- [4]A. Fukasawa, *et al.*, Proc. of 2nd Annual Meeting of Particle Society of Japan, 20P051(2005)
- [5]F. Ebina, et al., "Laser circulation system for compact monochromatic hard X-ray source", CAARI 2004: 18th International conference on the application of Accelerators in Research and Industry (2004, Oct. /10-15, USA)
- [6]T. Yamamoto, *et al.*, Proc. of the 7th Symposium on Accelerator and Related Technology for Application. (p. 5-8, 2005, June 9-10, JAPAN)