ELEMENT R&D FOR X-RAY GENERATOR ELECTRON GUN

Satoshi Ohsawa ^{1,A)}, Mitsuo Ikeda ^{A)}, Takashi Sugimura ^{A)}, Masafumi Tawada ^{A)},

Yasufumi Hozumi ^{B)}, Kouichi Kanno ^{C)}

^{A)} High Energy Accelerator Research Organization, Accelerator Laboratory

^{B)} Graduate Univ. for Advanced Studies

1-1 Oho, Tsukuba, Ibaraki 305-0801

^{C)}AET Japan Inc., 1-2-3 Manpukuji, Azabu-ku, Kawasaki, Kanagawa 215-0004

Abstract

A new electron-gun system is under development in order to increase X-ray brightness from a rotating target. In commercial X-ray generators, an electron beam hits a target at outside. Owing to deformation by centrifugal force, there has been a limit on the electron beam intensity. In order to overcome this difficulty, our new system focuses electrons inside of a rotating target. It has an advantage in that a heated-up point has support back side against centrifugal force. It is expected that this merit makes it possible to raise beam brightness to give stronger X-rays with brightness more than 10 times higher. We succeeded in focusing an electron beam of 60keV, 73mA as small as 2.1x0.24 mm².

X線発生用電子銃の要素開発研究

1.はじめに

X線発生装置は市販されており、研究室で広く 用いられている。その輝度を1桁上げることは出 来ないか? この夢を実現すべく坂部知平氏はコ の字型回転対陰極を発案し、その内側に電子ビー ムを照射することにより、X線の輝度を1桁上げる ことが出来ると提案した。

この案を実現するためには、コの字型回転対陰 極の内部に電子ビームを集束するための小型の集 束系が必要である。そこで考えられたのが、小型 の永久磁石で180度ビームを偏向し、同時にエッ ジもしくは勾配磁場で集束する案である。この案 の利点は、短い焦点距離で強く集束することによ り、ビームサイズを小さくすることが可能である ことである。

本研究の課題は、180度偏向磁石を用いた集束 系の性能を実験的に評価することである。昨年度 後半に科学技術振興機構の委託を受け、ビーム集 束系の具体的な設計と製作を始め、現在ビームを 用いた性能試験を行っている。

2.装置の構成

この装置は、電子銃とビームの集束系、及び光 学測定系の3つの部分から成る。電子銃から出た ビームをまず直径3mmのコリメーターで切り出し、 磁気レンズ(ML)と四極磁石で集束した後、偏 向磁石で180度曲げ、固定の標的に当てる。その 際、偏向磁石のエッジ集束を用いて、y方向の ビームサイズを極小にする。ステアリングコイル は、入射角を変え、エッジ集束の強さを調整する のに用いる。標的で発生した特性X線を、ピン ホールカメラの原理を用いた光学測定系で観測し、 標的上の電子ビームサイズを測定する。

図1:X線発生装置と光学測定系の構成図

3.実験の経緯と測定結果

3.1 実験の経緯

標的での発熱を避けるために、実験にはマイクロ 秒のパルスビームを用いることにした。しかし、予

¹ E-mail: satoshi.ohsawa@kek.jp

備的な実験の結果、ピンホールの径を10µmまで小さ くすると、ビーム像の輝度不足になることが判明し た。この問題はマイクロチャンネルプレート (MCP)を導入し可視光を増幅することで解決した。

また180度偏向磁石の漏れ磁場の影響で、その磁 場強度を上げると、ステアリングコイルの磁場強度 が不足し、最適な入射角が得られないという問題が 発生した。これは自作したコイルの巻き数不足によ るもので、コイルを再製作して解決した。

3.2 電子ビーム像の測定例

電子ビーム像をピンホールカメラの原理で測定している^[1]。銅板標的の表面で発生する特性X線を用いているので、絶縁物のスクリーンを用いた可視光による測定よりもにじみが少ない利点がある。

図2:光学測定系で観測した蛍光板上のX線ス ポット像

図3:上のX線スポット像の垂直断面輝度分布。 このデータから、y方向の電子ビームサイズ(半値 幅)が0.25mmと算出される。

3.3 測定装置の分解能

X線蛍光板の位置を変えて、X線スポットサイズの 変化を測定した結果が図4である。2本の直線とy軸 の交点の値dx、dyが、x及びy方向の分解能を示し ており、それぞれ $dx = 67 \mu m \ge dy = 86 \mu m$ である。 これらの内訳は、ピンホールの大きさ10 μm と暗視カ メラの画素の大きさ17.0 μm (x方向),18.5 μm (y方 向)、およびMCPと光学系に起因する像のボケであ る。

図4: 蛍光板の位置を変えて測定したX線スポット サイズの変化

3.4 電子ビームサイズの算出式

光学測定系で観測した蛍光板上のX線スポットサ イズ Δx , Δy から、標的上の電子ビームサイズ W_x , W_y を算出するのに次式を用いた。

 $W_{x} = (\Delta x - dx - \beta d_{c}) / \beta \sin \theta$ $W_{y} = (\Delta y - dy - \beta d_{c}) / \beta$

ここでdx, dy は上の3.3で求めた分解能で、 β は 光学系の倍率(コリメーターから測ったスクリーン までの距離と電子ビームスポットまでの距離の比) を表す。また θ は標的面と測定系のなす角度である。 d_c はコリメーターの直径で、 βd_c は無限小光源に よるピンホール像の増大分である。

3.5 電子ビームサイズの測定結果

以下に集束条件を様々に変えて測定した電子ビー ムサイズの変化の様子を示す。いずれも、蛍光板の 位置を β = 1.15、 θ = 10.4°に固定して測定した。

図5:ステアリングコイル電流とビームサイズ

図5は、180度偏向磁石に入る入射角を変えて、 エッジ集束の強さに対する応答を見ている。図6 は、四極磁石の電流に対するビームサイズの変化 で、図7はその時のターゲットに照射したビーム 電流である。また図 8 は、180度偏向磁石の強度 を変えた場合のビームサイズ変化である。 いずれの磁石の変化に対しても、ビームサイズの 最小値が $W_x = 2.1mm, W_y = 0.24mm$ 付近にある。 このときのビーム電流は73mAである。

図7:図6の各測定値に対応するビーム電流

図8:180度偏向磁石電流とビームサイズ

図9は、ビーム電流と電子銃グリッド電圧の関係を表している。高電圧側でビーム電流が減少しているが、この理由は、電流が増すと陽極とコリメーター間(15cm)でビームが空間電荷でより広がるためであり、陰極電流が減少しているためで

はない。また図10は、このときのビームサイズの 変化を表している。

4.考察

シミュレーションではビームが (1mm,0.1mm)^[2]、 になるが、測定値が (2.1mm,0.24mm) に制限され ている理由は、電子ビームのエミッタンスの差にあ ると考えられる。実際と配置はシミュレーションと 異なり、陽極とコリメーターの間に15cmの空間があ る。EGUNの計算によると、この間でエミッタンスが 約2倍に悪化する。従って、この空間を無くせば、 予定通りのビームサイズが得られると期待される。

5.謝辞

坂部知平先生には、X線測定について多大なるご 助言とご協力を頂きました。深く感謝いたします。

参考文献

- [1] M. Ikeda, et al., "特性X線を用いた電子銃ビームの微小 サイズ精密測定", Proceedings of the 30th Linear Accelerator Meeting in Japan, Saga, July 20-22, 2005
- [2] S. Ohsawa, et al., "HIGH BRIGHTNESS ELECTRON GUN FOR X-RAY SOURCE", Proceedings of PAC2005, Knoxville, U.S.A., May 16-20, 2005