Study on Klystron RF Pulse Shortening and Development of Waveform Diagnostic FPGA Board

Mitsuhiro Yoshida^{1,A)}, Shinichiro Michizono^{A)}, Hiroaki Katagiri^{A)}, Shuji Matsumoto^{A)}, Shigeki Fukuda^{A)} ^{A)} High Energy Research Organization (KEK) 1-1 Oho, Tsukuba, Ibaraki, 305-0801

Abstract

The RF pulse shortening occurred in the X-band klystron in the KEK-XTF. During the maintenance measurement in KEKB injector linac, we also observed that the S-band klystron had a similar phenomenon. These pulse shortening phenomena were studied with various equipments and methods. Further we developed FPGA IP and AD/DA hardware to record such abnormal waveforms effectively.

クライストロンのRF波形欠けの原因追跡と波形診断用FPGAボードの開発

1.はじめに

Xバンド大電力PPMクライストロンはリニアコライ ダー用のRF源として開発が進められていたが、開発 当初より出力RFの波形欠け現象が問題になっていた。 またこのようなRF波形欠け現象は、頻度は少ないも ののSバンドクライストロンでも類似な現象が観測 された。これらの波形欠け現象の原因追跡を行うと 共に、このような波形異常を効率的に選択するため、 FPGAを用いた波形診断IP及び安価で汎用の多チャ ンネル高速AD/DA変換ボードの開発を行った。

2.XバンドクライストロンのRF波形欠け

Xバンド大電力PPMクライストロン^[1]では40MW以上のRF出力において深刻な波形欠けが起きる。図1は 正常時の波形(左)と波形欠けが起きた際(右)である。

図1:XバンドクライストロンでのRF波形欠け

RF波形欠けが起きるとコレクター電流の透過率 が上がっているのが分かる。これは出力空洞のRF 電界が無くなると、ビームが広がらずにコレクター に入射するためであると考えられる。このRF波形 欠けの原因追究のため、様々な手段で測定を試みた。

2.1 RF電力/カソード電圧/周波数依存性

図2は、図1のような出力波形の際のRF波形欠

けRF電力依存性(左)と、カソード電圧/周波数依存性 (右)である。

図2からRF波形欠けの頻度は、出力RF電力に大きく依存するだけでなく、同じRF出力でもカソード電圧が高くなると、頻度が大幅に増える事が分かった。また周波数依存性は、カソード電圧により依存性も異なる事が分かった。

2.2 高調波

図1から分かるようにRF波形欠けと同時に高調 波の放出が確認されている。スペクトラムアナライ ザーでこの高調波成分を観測した所、22.4GHzと 32.4GHzの成分がある事が分かった。しかしこれは 波形を詳細に見てみた所、RF波形欠けの結果とし て出ているように見られた。

2.3 音響センサー

さらにRF波形欠けの原因を調査するため、音響 センサーをクライストロンのビームパイプ周辺及び 出力導波管に取り付けた。図3は音響センサーの出 力波形で、図3(上)はクライストロン本体に上から 順にセンサーを取り付けたもの、図3(下)は出力導 波管に順に取り付けたものであり、左右は正常波形

¹ E-mail: mitsuhiro.yoshida@kek.jp

の際(左)、と波形欠けが起きた際(右)で、図1の左 右に対応している。

図3:音響センサーの波形。 正常時(左)、RF波形欠け時(右)

図3からRF波形欠けが起きた際、本体に取り付けた音響センサーに関しては、出力空洞付近の音響センサーの振幅のみが増加しているのが分かる。さらにこの図3(下)に対して、音響センサーの波形の振幅を計算し、波形欠けが起きた際の振幅から、正常時の振幅を引いた波形が図4である。

図4から音波が導波管に沿って出力導波管から順 に伝播しているのがはっきり分かり、RF波形欠け が起きた際、放電音が出力空洞付近から出ている事 が確実となった。

2.4 XバンドRF波形欠けに関する対策及び予定

これまでの波形欠けの調査により出力空洞付近で の放電の疑いがあるため、出力空洞をソレノイドク ライストロンで波形欠けの起きなかった設計のもの に変更し、さらに出力導波管との結合孔の角を丸め る等の改善を行った6号機を製造した。現在この6 号機の試験中である。

3.SバンドクライストロンのRF波形欠け 電子陽電子入射器には60台のSバンド大電力クラ

イストロン(2856MHz,4µs,50Hz,最大RF出力50MW)が 常時運転中だが^[2]、このSバンドクライストロンで も類似のパルス欠け現象が見つかった。そこで60台 すべてについてRF波形欠け頻度の計数を行った所、 以下の箇所でRF波形欠けが見つかった。

Unit	Es [kV]	Pf [MW] (VSWRメータ)	欠け数/1hour	総運転時間 [h] 2005/6/1 現在
A-2	41	47.3	7.11	52,018
A-3	42	49.7	1.54	9,208
B-4	42	54.7	8.33	6,834
B-5	42	52	1.93	52,020
B-6	42	54.8	3.59	52,124
B-7	42	41.8	5.01	41,109
B-8	42	37.5	3.46	47,705
C-1	42	53.9	0.86	51,407
C-2	42	57.5	0.83	51,516
C-6	42	35.6	2.54	50,666
C-8	42	40.5	8.65	54,738
1-3	42	44.6	1.38	47,062
1-5	42	40.9	2.54	29,526
2-3	42	45	1.40	35,560
2-7	42	39.3	1.29	26,886
3-5	41	41.2	0.37	20,715
4-6	41	50.2	5.88	27,446
5-5	42	44.2	1.07	48,323
5-8	42	40.6	1.63	27,302

表1:RF波形欠けの頻度

以上の結果、運転に支障は無い頻度ではあるが、 原因の究明の必要があるため、これらの中で特に RF波形欠けの頻度が高く、さらにアーク部でビー ムロスにつながるB-7クライストロンを交換し、交 換したクライストロンをテストスタンドに装着して、 詳細な試験を行った。以下がその結果である。

3.1 RF電力/カソード電圧/周波数依存性

図5はカソード電圧を変えると共に、RF入力を 絞って各カソード電圧に対して出力RF電力を変えた 際のRF波形欠けの頻度をプロットしたものである。

図 5:RF電力/カソード電圧依存性

これからXバンドクライストロンの時と同様に、 RF波形欠けの頻度は、RF出力電力への依存性が大き いが、同じRF出力電力でもカソード電圧を上げると 増加する事が分かる。

3.2 シンチレーションファイバー

さらに電子ビームの状態を判断するためシンチ レーションファイバーをクライストロンのボディー とコレクターに巻きつけた。図6(右)はシンチレー ションファイバーの出力信号であり、RF波形欠けが 起きた後ではクライストロンボディーでの電子ビー ムの損失は少なくなり、コレクター側ではダイオー ド運転の時と同じレベルになるが、時間的な振動が 検出された。これらの事からRF欠けが起きると実際 に出力空洞にはRFの蓄積エネルギーが無くなり、か つバンチの状態が不安定であると推測できる。

図6:シンチレーションファイバーの波形

3.3 Sバンドクライストロン波形欠けのまとめ

Sバンドクライストロンでの波形欠けの頻度は多い所でも10パルス/時間=0.005%以下であるため、 実質的な運転では問題にならない。このパルス欠け が経年変化によるものなのかなど、今後調査を継続 する予定である。

4.波形診断IP

上記のような異常波形を分別及び計数するのはオ シロスコープ単体では難しい。そのためFPGA上の IP(Intellectual Property)で波形をデジタル信号 処理して異常波形の検出を行い、リアルタイムにト リガーを出力した。この際AD/DA変換及びFPGAの ハードウェアとしては、今回は既製品であるXilinx 社のXtremeDSPボードを利用した。図7(左)は波形 診断用のIPのブロック図である。

図7:波形診断IPのブロック図(左)と液晶TV上 の波形とカウント(右)

またNTSC-IPを開発し、図7(右)のようにTV上 に現在の波形と一つ前の異常波形を表示すると共に、 波形異常の計数を表示している。さらにFPGAボード からのトリガーをオシロスコープの外部トリガーと して入力し、pythonwin-TekVISAで波形を収集した。

5.波形診断用汎用FPGAボードの開発

クライストロンで異常が起きた際、それぞれの出 力信号の相関関係を見るためには、モニターすべき 信号が非常に多数ある。特にXバンドクライストロ ンでは、常にモニターしておくべき高速信号だけで も、カソード電圧、電流、コレクター電流、RF入力、 RF出力透過、反射のそれぞれ右、左、RF窓のフォト マル右、左と10chある。さらに音響センサー、シン チレーションファイバー等を追加すると20ch以上が 必要になる。上記の波形欠け調査では波形異常トリ ガーを複数のオシロスコープに入力しデータを収集 したが、オシロスコープは高額な上データ収集の速 度も遅くリアルタイムでの信号処理は不可能である。 そこで今後のこのような波形診断を容易にするた め汎用のFPGA-AD/DAボードの開発を行った。開発し たボードの仕様は表2の通りであり、極力安価な部

表2: FPGA-AD/DA/LVDSボードの仕様

品を使用したため価格は10万円程度である。

FPGA	Xilinx Spartan-3 XC3S1500
A/D	AnalogDevices AD9235(12bit,65MS/s)
× 10ch	or AD9215(10bit,105MS/s)
D/A×4ch	AnalogDevices AD9744(14bit,165MS/s)
LVDSx2ch	LV1023-LV1224(660Mbps)

6.まとめ

これまでのクライストロンの出力RF波形欠けの調査により、原因が出力空洞付近にあることが分かってきた。今の所決定的な結論にまでは至っていないが、出力空洞周りの磁場やビーム軌道等についていくつかの仮説が立てられた。

クライストロンのような真空管は完成してしまう と内部のビームに関する情報が極端に少なく、異常 が起きた際の原因追及が非常に難しい。そのため 様々なセンサーを取り付ける事が必要であり、また それらの信号を効率的に選別するために波形診断用 の回路が重要である。

参考文献

- S. Matsumoto, et al., "Development of PPM-focused Xband pulse klystron", Proceedings of the 2nd Annual Meeting of Particle Accelerator Society of Japan, Saga, Japan, Jul. 20-22, 2005
- [2] I. Sato, et al., "Design Report on PF Injector Linac Upgrade for KEKB", KEK Report 95-18, Mar., 1996