PASJ2023 WEP16

半導体を使用した MARX 方式クライストロン電源の開発

DEVELOPMENT OF MARX-TYPE KLYSTRON POWER SOURCE USING SEMICONDUCTORS

中山響介[#], 徳地明 Kyosuke Nakayama [#], Akira Tokuchi Pulsed Power Japan Lab. Ltd. (PPJ)

Abstract

A MARX-type solid-state klystron modulator has been developed. The specifications are an output voltage of 145 kV, an output current of 120 A, a pulse width of 10 microseconds and a repetition rate of 200 Hz. An 8-stages solid state MARX circuit using SiC-MOS FETs generates a high voltage pulse of 10 kV, which is stepped up to 145 kV by a pulse transformer. The details of this power supply are reported.

1. 導入

近年、パワー半導体の目覚ましい発展により、加速器 関係の設備を始めとした多くの用途に半導体が使われ 始めている。しかしながら、半導体を使用した装置の普 及率はまだまだ低迷しており、高電圧パルス電源や高電 圧・大電流スイッチデバイスには未だにパルスフォーミン グネットワーク(PFN)や真空管などといった古典的な技術 が使われ続けている。

ところで、現代の大型加速器にとってクライストロンは 欠かせない存在となっている。クライストロンとは、荷電粒 子を加速させるための大電力マイクロ波を発生する真空 管の一種である。パルス型クライストロンのエネルギ源と なる高電圧パルス発生回路は、主に充電器, PFN,サイ ラトロン、トランスで構成される(Fig. 1a)。一般的に、PFN とサイラトロンで数+kVのパルスを作り、トランスで数 kV オーダまで昇圧してクライストロンに印加する。ここではこ の回路をクライストロンモジュレータと呼ぶ。

本開発は、その内の PFN およびサイラトロンを半導体 MARX 回路に置き換える目的で進められた(Fig. 1b)。こ れには数多くのメリットが存在し、小型化、長寿命化(維持コスト低下)、高繰り返し化だけでなく、波形制御性の 向上が期待できる。

順を追って説明する。PFN は多数の大きく重いコンデ ンサとコイルで構成されており、絶縁距離確保のために 空間充填率が悪い。さらに、サイラトロンは別途付帯電 源が必要になる。また、サイラトロンはスイッチング可能な 回数が少なく(寿命が短く)ジッタが大きいにも関わらず、 入手性が悪く高価である。数百 Hz 以上の高繰り返し動 作にも向かない。それに対して、半導体 MARX 回路は 比較的小さいコンデンサと基板の積み重ねで構成され、 部品の集約度も高い。また、半導体を使用することで半 永久的に使用でき、高繰り返し化にも対応できる。加え て、FET や IGBT などの自己消弧可能な素子を使用す れば、パルス平坦部のドループ補償[1]や任意の波形の 生成[2]、ショット毎の電圧可変[3]も可能となることが実証 されている。

2. MARX 回路の動作原理

使用した MARX 回路を Fig. 2 に示す。回路は主にメ インコンデンサ、充電 FET、放電 FET から成る基板を複 数段積み重ねて構成される。まずは充電 FET を ON し、 全段のメインコンデンサを並列接続して充電する。次に 放電 FET を ON し、全段のコンデンサを直列に繋ぎ変え て放電する。これにより充電器の出力電圧*段数の電圧 を持ったパルスを出力することが可能となる。

MARX 回路はその原理からも分かるように非常にシン プルで高い拡張性を持っている。充電器の電圧は比較 的低くて良く、市販の電源で済むため経済性に優れる。

3. 設計仕様

設計仕様値を Table 1 に示す。充電器は市販 の-1300 V 電源を負極性で使用し、MARX を 8 段に設 定することでトランスー次側の出力を-10 kV とした。それ を昇圧比 1:15 のトランスに印加し、クライストロン電圧の 目標値である-145 kV を作る。その立上り時間は 2 μ s 以 下とした。クライストロン電流は 120 A で、これとトランスの 昇圧比から MARX の定格電流値は 1800 A となった。パ ルス幅は最大 10 μ s、繰り返し周波数は 200 Hz とした。 充電器の台数は最大 13 台まで増やすことができ、 400 Hz 超までアップグレード可能である。以上から、出 力可能な最大平均電力は 72 kW となるが、実際はクライ ストロンの定格に制限されることに注意されたい。

4. 外観, 内観

4.1 外観

外観の写真を Fig. 3 に示す。モジュレータは制御ラック、高圧ステーション、油タンクで構成される。高圧ステーションは充電器と MARX を搭載し、油タンクはトランスを内蔵する。制御ラックは高圧ステーションと光ファイバのみで接続され、電気的に絶縁した状態で操作指示を出すことができる。高圧ステーションはシールドルームになっており、外部からのノイズの影響を受けないようになっている。これにより PLC を始めとした制御系が故障するリスクを減らすことが可能となる。油タンクはクライストロンを上から差し込む構造になっている。

[#] nakayama@myppj.com

Proceedings of the 20th Annual Meeting of Particle Accelerator Society of Japan August 29 - September 1, 2023, Funabashi

PASJ2023 WEP16

Figure 1: Comparison of circuit. From top, (a) Conventional. (b) Developed.

Figure 2: Semiconductor MARX circuit. From left, (a) Basic circuit. (b) Waveforms of gate signals and output.

Item	Target value
Charging voltage	-1300 V
Number of stages	8
Primary (Pri.) voltage & current	-10 kV, 1800 A
Secondary (Sec.) voltage & current	-145 kV, 120 A
Rising time	Less than 2 µs
Pulse width	10 µs (Max.)
Repetition rate	200 Hz (400 Hz upgrade available)

Table 1: Modulator Specifications

4.2 内観

Average power

次に各部の内観の写真を Fig. 4 に示す。Figure 4a は 高圧ステーション内部の充電器と制御盤の様子である。 搭載する充電器は、現在は5 台のみだが最大13 台まで 拡張可能とした。これにより 400 Hz 超の出力を実現可能 となる。写真の制御盤は内部に PLC を搭載しており、制 御ラックに搭載された別の制御盤内の PLC と光ファイバ で接続され、操作信号やインターロック信号をやり取りす る。次に、Fig. 4b に MARX ユニットの様子を示す。見た 通り 8 段構成であることが分かり、トランスー次側までの 経路をすべて幅広の銅板とすることで可能な限りの低イ

36 kW (72 kW when 400 Hz)

Figure 3: Exterior of modulator. From left, Control rack, High voltage stand(HVS), Oil tank.

Figure 4: Interior. From left, (a) Charger and control unit. (b) MARX stack. (c) Klystron socket in Oil tank.

Figure 5: MARX Print-circuit board.

ンダクタンスを実現している。最後に、Fig. 4c に油タンクの内部を示す。クライストロンの接続方式はソケット式を 採用した。図に赤丸で示した部分がばねになっており、 クライストロンを上から挿入するだけで接続が完了する。

5. MARX 基板

MARX 基板は 1 枚のプリント基板で実現させた (Fig. 5)。使用した半導体は耐圧 1.7kV の SiC-MOSFET だ。基板の定格電圧は、充電電圧と同じ 1300 V, 定格 電流は 1800 A,10 µs だ。放電 FET は 16 並列で使用し、 すべての素子に個別でヒートシンクを取り付けた。冷却 方式は空冷とした。SiC の損失の少なさがこれを可能に している。 PASJ2023 WEP16

Figure 6: Output waveforms From top, (a) without transformer. Red and yellow show MARX-output voltage and current respectively. (b) with transformer. Red, yellow and blue show sec. voltage, pri. current and sec. current respectively.

Figure 7: Ripple removal. From top, (a) Before countermeasure. Pri. current (Yellow) has ripple that exceed the target rating. (b) After. Pri. current(Green) does not have the ripple.

6. 出力波形

6.1 MARX ユニット単体 まず、トランスを接続せずに MARX ユニットから直接 抵抗負荷に出力した時の波形を Fig. 6a に示す。なお、ト ランスは未使用だが回路上の位置づけが分かりやすい ように「1 次側」という表現を使用している。充電電圧 1250 V で MARX が 8 段のため原理通り約 10 kVp のパ ルスを得ることが出来た。抵抗負荷は約 5.6 Ω だから出 力電流は 1800 Ap で、MARX ユニット単体で仕様を満 たすことが確認できた。パルス幅は 10 μs としている。

6.2 MARX ユニット+トランス

二つ目に、トランスを介してパルスを出力した波形を Fig. 6b に示す。抵抗負荷 1250 Ω として、二次電圧、一 次電流、二次電流はそれぞれの目標値を達成した。

6.3 リプルの除去

三つ目に、MARX1 段でのリプルを取り除いた波形を Fig.7 に示す。Figure 7a の波形では複数のコンデンサ間 で共振が発生しており、リプルが仕様を満たしていな かった。それらのコンデンサを選定し直すことでパルス平 坦度は目標仕様を満たした(Fig. 7b)。8 段での試験は後 日行う予定である。

7. 結論

今回、我々は半導体を用いたクライストロンモジュレー タの開発に着手した。現在は単発動作の試験で所望の 仕様値を満たすことを確認するところまで進んでいる。

今後の展望とて、まずは連続運転を行うことが最優先 と考えている。実用化に向けて、各発熱部の温度が定格 内かどうか、また、半導体特有の問題が起こらないかを 確認することが急務である。さらには、長年使用されてき た従来技術の装置を半導体化するに当たって、最も問 題になるのが信頼性である。特に加速器関連装置では 365日24時間の中で一度でも不具合が発生してしまうと 大きな機会損失が発生してしまう。これを確保するため にも、我々は負荷短絡試験を始めとした各単一故障へ の対策を十分に行っていかなければならない。

参考文献

- T. Takayanagi, A. Ono, "LTD SEMICONDUCTOR SWITCH POWER SUPPLY FOR J-PARC KICKER", Proc. PASJ2021, Takasaki (Online meeting), Japan, Aug. 2021, pp. 53-57.
- [2] J. Weihua *et al.*, "2. Pulsed Power Generation and Application Based on Pulse Adding of Linear Transformer Driver", J. Plasma Fusion Res. Vol.94, No.4 2018, pp. 192-196.
- [3] K. Nakayama, A. Tokuchi, "Development of a Highrepetition, High-voltage and Bipolar MARX Generator", EAPPC & BEAMS 2022 PROCEEDINGS, Sept. 2022, pp. 294-297.