PASJ2023 WEP08

SuperKEKB における高速光ファイバービームロスモニターシステムの開発 DEVELOPMENT OF HIGH-SPEED BEAM LOSS MONITOR SYSTEM WITH OPTICAL FIBER IN SuperKEKB

小笠原 舜斗[#], 池田 仁美, 小林 鉄也, 西脇 みちる Shunto Ogasawara[#], Hitomi Ikeda, Tetsuya Kobayashi, Michiru Nishiwaki High Energy Accelerator Research Organization (KEK)

Abstract

SuperKEKB is the e-/e+ collider that aims the world's highest luminosity. To achieve the target luminosity, the design beam current has been set at a remarkably high value of 3.6 A. Large beam loss from high current beam may seriously damage Belle II detector and/or other equipment. As a countermeasure, it is required to detect dangerous beam loss as fast as 1 microsecond and abort stored beam immediately. In recent operations, arc sensors using optical fiber, which are adopted at some RF stations, have triggered unwanted(accidental/incorrect) RF-interlock due to beam loss frequently These events are not the intended use of the arc sensor, but they were useful when regarded as high-speed loss monitors. Therefore, we have developed and installed a new high-speed beam loss monitor system using an optical fiber and a high-speed signal processor. It was confirmed that this system shortened the time to beam abort by several microseconds.

1. はじめに

SuperKEKB[1]は、標準理論を超える物理探索を目的 とした、周長3kmの電子陽電子衝突型円形加速器であ る。SuperKEKBは、前身であるKEKBの数十倍のルミノ シティ(衝突頻度)を目標としており、蓄積ビーム電流も最 大3.6A(設計値)という世界最大級に設定されている。

大電流ビームに由来する巨大なビームロスは、ビーム ラインを構成する各種機器に深刻な故障をもたらす恐れ がある。特に最近では、Sudden Beam Loss (SBL)[2]と呼 ばれる原因不明のビームロス事象が問題となっている。 SBL の特徴として、1~数ターン(10 µs/turn)以内に前兆 なく発生する事、ロス電荷量が非常に大きい(バンチトレ インの半分以上)場合がある事などが挙げられる。特に 高感度な素粒子検出器の集合体である Belle II検出器 [3]にとっては重大な脅威であり、原因究明と検出器保護 対策の両方が急がれている。

検出器保護対策の一つとして、ビームアボートの高速 化が要求されている。現状では、信号伝達距離が長いこ となどから、アボート要求から実際にアボートされるまで 数十 µs 程度のタイムラグがある。これを 1 µs でも短縮す ることが、リスク低減に資すると考えられている。

SuperKEKB の高周波加速システム[4]では、ビーム加速のために最大1MW級の連続波RFを加速空洞(ARES空洞)[5]に貯蔵する。空洞内での放電は故障や真空悪化の原因となるため、ARES空洞には放電を検知してアボート要求を出すためのアークセンサ[6]が設置されている。一部のRFステーションでは、空洞壁に光ファイバーの一端を直接取り付け、放電光を地上の光センサ(光電子増倍管:PMT)へ直接輸送する方式のアークセンサを装備している。

ビームロスなどの荷電粒子が光ファイバーを横切ると、 チェレンコフ光を発生させることが知られている[7]。 ARES 空洞のアークセンサにおいても、ビームロスによる チェレンコフ光を PMT が放電光と誤認し、空洞放電のイ ンターロックによってアボートを要求する事象がしばしば 発生していた。これはアークセンサの本来の目的を考え ると誤検知に他ならないが、アークセンサ自体が応答性 を追求したシステムであることに加えて設置場所の関係 もあり、結果的に本職のロスモニターよりも数 µs 早くア ボートを出している事象がしばしば見られた。これは検出 器保護の観点からは有用なので、しばらくの間アークセ ンサは実質的なロスモニターとしても(むしろ積極的に)運 用されていた。しかしこれでは空洞放電のアボートと区別 がつかず、運転判断(アボート原因の解析)に支障が生じ る。

そこで、独立したロスモニターとして使用するための光 ファイバーを、アークセンサとは別に新規にビームライン へ敷設した。さらに、FPGA を用いた高速な信号処理装 置をあわせて製作し、空洞アークセンサに代わる高速ロ スモニターシステムとして構築した。

2. 光ファイバーの敷設

2.1 SuperKEKB の概要

Figure 1: Overview of SuperKEKB.

Proceedings of the 20th Annual Meeting of Particle Accelerator Society of Japan August 29 - September 1, 2023, Funabashi

PASJ2023 WEP08

Figure 1 に、SuperKEKB 主リングの概要を示す。 SuperKEKB は 7 GeV 電子リング(High Energy Ring, HER) と4 GeV 陽電子リング(Low Energy Ring, LER)で 構成される。トンネルは 4 つの直線部(筑波、大穂、富士、 日光)を4 つの曲線部でつないだ構成である。Belle II検 出器を含む衝突点は、筑波直線部にある。

SuperKEKB のアボートキッカー[8]およびビームダン プは富士直線部に設置されており、筑波直線部とは反 対側にあたる。中央制御棟(CCB)は、富士直線部に比 較的近い位置にある。CCB では、リング各所からのア ボート要求を一旦集約してアボートキッカーを立ち上げ ている[9]。

筑波以外の 3 つの直線部には 6 つの RF セクション (D4, D5, D7, D8, D10, D11)があり、両リング合わせて 30 式の加速空洞(ARES または超伝導空洞)が設置されて いる。特に D5 セクション(大穂直線部)に設置されている 6 台の ARES 空洞(D05A~F, LER)のアークセンサが光 ファイバーを使用しており、ビームロスに反応する。

2.2 光ファイバーの敷設

ARES のアークセンサが SBL に反応した事象では、 D5 セクションのうち LER 上流側(富士直線部側)のアー クセンサほど強い信号が観測される傾向があった。そこ で、光ファイバーの敷設場所は D5 セクションの上流にあ たる南曲線部(富士直線部と大穂直線部を結ぶ曲線部) とした。ここには D6 電源棟と呼ばれる地上建屋があり、 CCB への距離も比較的短いため、配線経路の面でも有 利である。Figure 2 に、敷設方法の概略を示す。

Figure 2: Arrangement of optical fibers.

光ファイバーはコア径 62.5 µm の市販の単芯ファイ バーで、南曲線部の D6V2 コリメータを中心に 5 本、そ れぞれ経路を変えて敷設した。敷設したファイバーは 6 芯光ファイバーで集約し、D6 電源棟の受光装置へ接続 した。

受光装置は ARES 用アークセンサ向けの NIM モ ジュールをそのまま流用した。PMT(浜松ホトニクス H6780)を4つ内蔵しており、4 ch の光信号を強度に応じ た電気信号に変換する機能を有する。H6780 の信号立 ち上がり時間は0.78 nsであり、今回の目的に対して十分 な応答性を持つ。

Figure 3 に、オシロスコープで観測したビームロス信号 の例を示す。典型的な SBL では、ビームロス信号は幅 10 µs 程度のピーク2 山となることが多い。チャンネルごと に強度は異なるものの、概形は他のロスモニターで観測 される信号とも一致しており、正しくビームロスを観測でき ていると考えられる。

3. 信号処理装置

3.1 信号処理装置概要

受光装置によってアナログ電気信号に変換したビーム ロス信号を高速に処理し、アボートの必要性を素早く判 断するための信号処理装置を新規に製作した。Figure 4 に、装置の外観を示す。

Figure 4: The signal processing unit (red ellipse).

信号処理装置は19インチ規格1Uの大きさで、アナロ グ入力、外部トリガ出力、外部トリガ入力用のBNCポート をそれぞれ2CHずつ持つ。

Figure 5 に、信号処理装置のタイムチャートを示す。ア ナログ入力に入ってきた信号は、40 Msps で AD 変換 (16bit)され、リングバッファへ記録される。入力信号が一 定の条件(後述)を満たした場合は、速やかに外部トリガ 出力ポートよりアボート要求信号を発する。これらの基本 的な仕様はKEKで策定し、詳細設計および実機製作は (株)三光社へ依頼した。

ビームアボートを要求するからには、その事象(アボート原因)を後から担当職員が解析できることは必須である。 そこで、アボート要求に至った波形データを保存するため、アボート後はリングバッファのデータを外部サーバー へ転送するようにした。転送されたデータは後述の加工 ツールで加工され、担当者や運転シフト職員らが確認で きるようになる。

PASJ2023 WEP08

Figure 5: Time chart of the signal processing unit.

3.2 ビームアボートの判定

ビームアボートの判定方法は、実績のあるアークセン サの判定方法を踏襲して決定した。Figure 6 に、標準の 判定ロジックを示す。

Figure 6: Abort decision logic.

アボートを判定するために、ADC 閾値(以下閾値)、タ イムアウト時間(以下 TO)、時間割合の 3 つのパラメータ をあらかじめ定める。ADC 入力が閾値を超えると、信号 処理装置はクロックカウンタをスタートさせる。その後 TO に達するまでのクロックのうち、閾値を超えていたクロック 数が TO に対して指定した割合を超えた場合、その時点 でアボート要求を出す。指定の割合を超えないまま TO に達した場合は、何もせずクロックカウンタをリセットする。

このような判定方法を採用しているのは、宇宙線によ る信号とビームロスを区別するためである。これらはその 信号幅で概ね区別することができる。一方で、Fig. 3 に 示したようにビームロスは 2 山以上のピークとなる場合も 多いので、「ADC 入力が閾値を下回るまでのクロック数」 とすると、このような信号を見誤る可能性がある。

本装置の導入の目的(1 µs を争う高速なアボート判断) を考えると、TO時間を可能な限り短く(または割合を少な く)することが重要である。しかしTO時間を短くするほど、 宇宙線による誤作動の頻度が上昇する。具体的なTOと 割合は、これらのトレードオフを考慮して試行錯誤で決 めるしかない。幸いにして我々の場合はアークセンサの 運用経験があったため、比較的スムーズに調整を進める ことができた。現在は、TOが10 µs,割合30%(ピーク幅 3 µs で発報)に設定している。

3.3 VETO 機能

本システムはSBL等の大きなビームロスへの対応を主 眼としている。アボートの必要がない軽微なビームロスで は、当然反応しないことが望ましい。特にSBL はビーム 入射とは関係がないとされているため、入射タイミングで 発生する比較的大きな(しかしアボートするほどでもない) ビームロスは無視したい。そこで、信号処理装置にはトリ ガ信号入力によるVETO機能を設けた。トリガ信号として 入射トリガ信号を受信すれば、入射タイミングのみアボー ト判定を短時間(1 ms)休止させることができる。

本機能が存在することにより、アボート判定における閾 値を引き下げることができる。これはビームロスの立ち上 がりに対してカウンタの開始タイミングを早めることを意味 するため、結果としてアボート判定を更に高速化できると 考えられる。ただし、本機能は SuperKEKB の長期シャッ トダウン(LS1)開始後に追加されたもののため、実際の ビーム運転ではテストされていない。具体的な閾値の再 調整は、運転開始後の課題となる。

3.4 積分によるビームアボート判定

ビームアボートの判定方法として、3.2節で述べた方法のほかに、一定期間の ADC 値の積分を用いる方法も考えられる。積分による判定機能も LS1 開始後に追加され、3.2節で述べた判定方法と選択(または並立)できる。

ADC(40 Msps)の入力値から、過去一定時間(最大 100µs)の積分値が常にリアルタイムで算出され、その積 分値が積分用の閾値を超えた場合にアボート要求を出 す。蓄積するデータ点数は2の累乗で選択可能で、128 から4096点まで選択できる。また、積分用に蓄積する値 はオフセット値を加えることもでき、ノイズレベルを差し引 いての積算が可能である。

本機能も、実際のビーム運転では未だテストされてい ない。VETO機能と同様に、調整は今後の課題となる。

3.5 その他の機能

リングバッファやアボート判定等の信号処理は、 FPGA(Zynq 7000)上に実装することで高速化を図っている。動作クロックは40 MHzの内部クロックである。CPU上ではLinux(Ubuntu 18.02)および EPICS IOC を動作させている。アボート判定の閾値をはじめとした各種パラメータを全て EPICS レコード化することで、ネットワークを通じた設定変更を容易に行えるようにした。

リングバッファの外部サーバーへの転送は、外部サー バーが信号処理装置のLinuxファイルシステムをNFSマ ウントすることで実現している。

4. データ解析ソフトウェア

外部サーバーへ転送されたリングバッファのデータは 独自フォーマットのバイナリ形式であり、解析に手間がか かるものである。担当職員が後から腰をすえて解析する ためには問題ないが、運転シフト職員やオペレータの立 場からは、アボートの原因はアボート発生直後に確認し たい。本システムによるアボートの場合は、ビームロスを 正しく検知した(または誤検知した)という事実、ビームロ スの様態(概形や信号強度)といった基本的な情報を、ア

Proceedings of the 20th Annual Meeting of Particle Accelerator Society of Japan August 29 - September 1, 2023, Funabashi

PASJ2023 WEP08

ボートから遅くとも数分程度で提供することが望ましい。

そこで、転送されたデータを更に扱いやすく加工する ソフトウェアを製作した。このソフトウェアは、データ転送 先となるサーバー上で常時稼働する Python スクリプトで あり、転送先ディレクトリを定期的に巡回する。新たなファ イル転送を確認すると、アボート前後 5 ms および 50 µs の範囲のデータを切り出し、その波形の画像ファイルお よび csv ファイル(5 ms のみ)、イベントの概要(ピーク高さ、 アボート時のビーム電流など)を json 形式のテキストでま とめたファイルを作成する。Figure 7 に、作成されたグラ フ画像(アボート前後 50 µs)の例を示す。

Figure 7: Example of picture (50 μ s) generated by analyze software.

さらに、これらのデータを簡単に確認できるよう、専用 のwebページを合わせて整備した。webページではjson ファイルを基にイベントの一覧を表示するほか、各イベン トに対して人間がコメントを書き込むこともできる。 Figure 8 に、webページの表示例を示す。

Figure 8: Event summary web page.

5. 運用結果

本システムは試験運用期間(アボートを出さずにイベントの波形だけを収集する)を経て、2022年6月より本格 運用(実際にアボート要求を出す)を開始した。運用開始の2週間後にSuperKEKBはLS1に入ったが、停止ま での間に本システムでは9回の発報(宇宙線起因と思われる誤発報3回を除く)があった。そのうち、本システムの アボート信号が最も早くCCBへ到達した事象は7回だった。Figure9に、そのような事象の一例を示す。

SuperKEKB では、アボート信号の時刻を高精度に記録するシステム[10]が整備されており、Fig.9 は CCB ヘ アボート要求信号が到達した時刻と順序を示している。リ ング各所から出たアボート要求信号は、点在する集約モ ジュールを経由して CCB へ送られる。「Time」が集約モ ジュールへの信号到達時刻を、「Central Time」が CCB へのアボート信号到達時刻を示している。つまり「Central Time」は、集約モジュールから CCB までの配線距離に応じて「Time」よりも遅れる。ただし光ファイバーロスモニ ターについては、集約モジュールを経由せず直接 CCB へ信号を送信している。

20:32:37					
RING	Source	Central Time	Signal	Time	Delta
LER	Loss Monitor D6 (Optical Fiber)	2022-06-18 20:32:37.322304000	Loss Monitor D6 (Optical Fiber)	2022-06-18 20:32:37.322304000	0.000 005 200
	D7	2022-06-18 20:32:37.322307400	Loss Monitor D7-1	2022-06-18 20:32:37.322305900	0.000 007 100
LER			RF D7-A	2022-06-18 20:32:37.322333100	0.000 034 300
			RF D7-B	2022-06-18 20:32:37.322335500	0.000 036 700
			RF D7-E	2022-06-18 20:32:37.322344400	0.000 045 600
			RF D7-D	2022-06-18 20:32:37.322352000	0.000 053 200
LER	D4	2022-06-18 20:32:37.322310400	Loss Monitor D4-3	2022-06-18 20:32:37.322305700	0.000 006 900
			Loss Monitor D4-2	2022-06-18 20:32:37.322307800	0.000 009 000
			Loss Monitor D4-1	2022-06-18 20:32:37.322308100	0.000 009 300
LER	D2	2022-06-18 20:32:37.322310900	Belle2 CLAWS	2022-06-18 20:32:37.322298800	0.000 000 000
			Belle2 VXD diamond	2022-06-18 20:32:37.322306300	0.000 007 500
HER	D2	2022-06-18 20:32:37.322313500	Belle2 CLAWS	2022-06-18 20:32:37.322300200	0.000 001 400
			Belle2 VXD diamond	2022-06-18 20:32:37.322307700	0.000 008 900

Figure 9: Example of abort timestamp.

Figure 9 の例では、Belle II測定器に取り付けられた CLAWSと呼ばれるロスモニターからのアボート要求が最 も早く発行されている(「Time」が最速)が、CCB までの信 号伝達に 12.1 µs を要している。その間に光ファイバーロ スモニター[Loss Monitor D6 (Optical Fiber)] の信号が CCB へ到達しており、これが最初(「Central Time」最速) であった。時系列で整理した図を、Fig. 10 に示す。

Figure 10: Time chart of the event.

光ファイバーロスモニターの「Central Time」は、2番目の信号(Loss Monitor D7-1,既存のロスモニター)よりも 3.4 μ s 早い。LS1 直前の時点での SuperKEKB 運転では、 アボートギャップを 2 つ(5 μ s 間隔)設けているので、

PASJ2023 WEP08

3.4 µs の高速化は、68%程度の確率で半周早くアボート できると解釈できる。

6. まとめ

SuperKEKBにおいて、光ファイバーを用いた高速ロス モニターシステムを導入した。本システムの導入によって ビームアボートを数 µs 高速化することができ、RF のトラ ブルとビームロスによるアボートが紛らわしい問題も解決 することができた。

SuperKEKB の運転再開後は、VETO 機能や積分機 能など新規に追加した機能の検証・調整を進め、さらな る性能向上を目指していく予定である。

謝辞

(株)三光社の皆様には、信号処理装置の開発において、FPGA処理の実装を含む多大な貢献をいただきました。また新規機能の追加・改修に際しても、大変なご助力をいただきました。この場を借りて御礼申し上げます。

参考文献

- [1] Y. Funakoshi *et al.*, "The SuperKEKB Has Broken the World Record of the Luminosity", Proc. of IPAC2022, pp. 1-5.
- [2] H. Ikeda *et al.*, "Fast Trigger System for Beam Abort System in SuperKEKB", Proc. of IPAC2022, pp. 754-756.
- [3] https://www.belle2.org/
- [4] K. Akai et al., "RF System for SuperKEKB", Proc. of PASJ2010, pp.177-181.
- [5] T. Kageyama *et al.*, "Development of High-Power ARES Cavities", Proc. of PAC97, 1997, pp. 2902-2904.
- [6] K. Nakanishi *et al.*, "Evaluation of the optical fiber for arc sensor for the RF system in SuperKEKB", Proc. of PASJ2014, pp.819-822.
- [7] Y. Yano *et al.*, "Optical Fiber Beam Loss Monitor", Proc. of PASJ9, pp.902-906.
- [8] T. Mimashi *et al.*, "The Abort System of SuperKEKB High Energy Ring", Proc. of PASJ2017, pp.279-282.
- [9] S. Sasaki *et al.*, "Development of Abort Trigger System for SuperKEKB", Proc. of PASJ2014, pp.1267-1270.
- [10] S. Sasaki *et al.*, "Development of time stamp recording system for SuperKEKB abort trigger system", Proc. of PASJ2017, pp.610-612.