High power continuous wave test of RF couplers for the RFQ of the Linear IFMIF Prototype Accelerator.

IFMIF

DE FRANCO Andrea for the LIPAc team 第20回日本加速器学会年会 - 29th August - 1st September 2023

Linear IFMIF Prototype Accelerator (LIPAc)

Rokkasho Fusion Institute (BA Site)

Author list

De Franco A.[†], Hirosawa K., Ishimura K., Kaneko N., Kondo K., Kubo N., Masuda K., Nakayama T., Narita T., Sugimoto M., Yanagimachi T., National Institutes for Quantum Science and Technology (QST), Rokkasho, Japan

Caballero C., Gonzalez-Gallego S.C. L., Maindive L., Morales J.C., University of Granada, Granada, Spain Garcia J. M., The Centre for Energy, Environmental and Technological Research (CIEMAT), Madrid, Spain Gex D., Moya I., Scantamburlo F.¹, Fusion for Energy (F4E) ¹also at National Institute for Nuclear Physics (INFN), Legnaro, Italy

Linear IFMIF Prototype Accelerator

29/08/23 - 1/09/23

IFMIF

PAC

第20回日本加速器学会年会 – De Franco A.

FUSION FOR ENERGY

RFQ RF couplers

2D cut view of RFQ and its O-ring couplers before cooling enhancement.

Ceramic seal	O-ring	Brazed	
Material	All Cu	Mostly SUS + 50µm Cu	
Vacuum gauge	Х	0	
Arc sensor	Optical fibre + PD	APD on window	
Antenna depth	34.86 mm	45 mm	
Cooling	Loop + jacket + cold finger + forced air	Loop + around ceramic + inner conductor	
nner near window	Round near ceramic	Perpendicular near ceramic	

O-ring couplers damaged during RF conditioning at high duty cycle.

Improved heat extraction design and re-installed in RFQ.

High-power test of Brazed couplers started.

Alumina window after O-ring melt. Visible O-ring debris. Cu black deposits at high filed region on ceramic and anchor.

RFQ RF couplers

2D cut view of RFQ and its O-ring couplers before cooling enhancement.

O-ring couplers damaged during RF conditioning at high duty cycle.

Improved heat extraction design and re-installed in RFQ.

High-power test of Brazed couplers started.

Alumina window after O-ring melt. Visible O-ring debris. Cu black deposits at high filed region on ceramic and anchor.

Ceramic seal	O-ring	Brazed
Material	All Cu	Mostly SUS $+$ 50 μ m Cu
Vacuum gauge	Х	0
Arc sensor	Optical fibre + PD	APD on window
Antenna depth	34.86 mm	45 mm
Cooling	Loop + jacket + cold finger + forced air	Loop + around ceramic + inner conductor
Inner near window	Round near ceramic	Perpendicular near ceramic

Load

High Power Test Bench

Before can be used in RFQ need:

- Thermomechanical validation with forward power > 200kW in CW
- RF conditioning

Photo during test bench assembly

29/08/23 - 1/09/23

High Power Test Bench - 2

Pb shielding around test bench.

Thermal simulations of cavity at CW with FWD 220kW.

<u>Vacuum</u> 80 L/s TMP + scroll pump 72 hours baking at 100°C Shielding 2 x 1 mm thick Pb curtain

Instrumentation RGA+ Cold cathode vacuum gauge Arc sensor in each coupler 9 PT100 2 IR camera Dose counter (outside shield) Remote movable tuner Calorimetry on CPL1

29/08/23 - 1/09/23

RF conditioning

- 2. Decrease rep. period to 10ms
- 3. Elongate pulse width

REV pulse shape + vacuum H_20 splits in O and H

→Multipacting/Plasma?

Rev pulse shape for different resonant frequency adjusted with tuner.

2D scan of FWD and its frequency. No overlap with flat and small on average REV.

FWD [kW]

Multipacting

Example pulse shapes along the Pareto front of REV shape and average.

29/08/23 - 1/09/23

Thermomechanical design validation

TRA too low to conclude on CPL2CPL1 in much stricter conditions than originally intended.→ sufficient for design validation!

MP in cavity, not in CPL1 because:

- CPL1 T increase minimum
- Cavity tuning changes pulse shape
- No light observed at CPL1 view port
- High SEY of Al
- Cavity visual inspection after test

Integrated dose at d.c. 2% FWD 200kW over 48hrs. Low dose on central stub. \rightarrow X-ray from gap in cavity (no MP in CPL1)

29/08/23 - 1/09/23

IFMIF

第20回日本加速器学会年会 – De Franco A.

FUSION FOR ENERGY SQST

Surface Temperature at 96% duty cycle

29/08/23 - 1/09/23

IFMIF

IPAC

第20回日本加速器学会年会 – De Franco A.

Cavity visual inspection

Cu layer not well attached - melted

Cu layer on SUS input flange not well attached, RF enter gap and create loop, which further melt and deform. Heat marks on the nearby coupler are visible.

RF loss on cuts for air pocket evacuation

RF loss induced heat in the cuts used for evacuation of air pocket near O-ring.

MP / Arcs , protruded and melted RF fingers

Traces of MP on cavity surface near tuner. Also, visible deformed and melted RF fingers.

29/08/23 - 1/09/23

Cavity visual inspection

Cu layer not well attached - melted

Replace with Cu plating

Cu layer on SUS input flange not well attached, RF enter gap and create loop, which further melt and deform. Heat marks on the nearby coupler are visible.

RF loss on cuts for air pocket evacuation Bridge gap with Cu mesh

RF loss induced heat in the cuts used for evacuation of air pocket near O-ring.

MP / Arcs , protruded and melted RF fingers

Edges/gaps of tuner in high E region not ideal. Remove tuner and replace with flat lid.

Cu plating of entire inner surface.

Traces of MP on cavity surface near tuner. Also, visible deformed and melted RF fingers.

- LIPAc RFQ RF conditioning and beam commissioning towards CW ongoing.
- RF couplers identified as critical system.
- O-ring based couplers used so far were improved and re-installed
- Original coupler`s thermal design validated with a high-power high duty cycle test bench
- Bridge cavity will be improved to complete test/conditioning of the series.