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Motivation

• Discrepancy between impedance calculations and beam-based measurements

- For several decades, theories and numerical tools for impedance calculations have been “well established”.

- Techniques for experimental observations of impedance effects have also matured in parallel.

- However, discrepancies remain in each accelerator project, to varying degrees [1].

2[1] V. Smaluk, NIMA 888, 22 (2018). [2] B. W. Zotter, CERN-SPS-81-14-DI (1981).
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Zotter’s equation [2]:

We must be cautious:
The model can be a source of discrepancies 
if its assumptions are violated.

https://www.sciencedirect.com/science/article/pii/S0168900218300640
https://cds.cern.ch/record/129783/files/198107013.pdf


Theories for longitudinal single-bunch impedance effects

• Haissinski equation [1]

- Exact solution of Vlasov-Fokker-Planck equation below microwave instability threshold.


- Bottom-up predictions of potential-well lengthening: Impedance calculations Simulations Experiments.


• Zotter’s equation [2]

- Simple scaling law of bunch lengthening, widely used to extrapolate effective impedance from bunch length 

measurements.


• Connecting Haissinski equation (HE) and Zotter’s equation (ZE)

- HE is self-consistent, knowing  means “knowing everything”, except for .


- ZE is easy to use, but it has certain applicability conditions.

- In this talk, we examine ZE and present a new equation for potential-well bunch lengthening.
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3[1] J. Haissinski, Nuovo Cimento 18, 1 (1973).  [2] B. W. Zotter, CERN-SPS-81-14-DI (1981). [3] V. Smaluk, NIMA 888, 22 (2018).
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 is the bunch lengthening factor.
 was used in [2].
 is more consistent to Haissinski equation and experiments [3].
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A revisit of Zotter’s equation

• How Zotter derived the cubic equation?

- Equations of motion + Incoherent tune shift (from effective impedance) + Energy spread condition [1]


• An alternative way to derive the cubic equation

- Equations of motion + Incoherent tune shift (from from linearized wake force) + Energy spread condition

- The standard formulae of effective impedance is unnecessary

4[1] B. W. Zotter, CERN-SPS-81-14-DI (1981).

d2z
ds2

= −
ω2

z0

c2
z + ηF(z, s) F(z, s) = In ∫

∞

−∞
W∥(z − z′￼)λ(z′￼, s)dz′￼ =

cIn

2π ∫
∞

−∞
dkZ∥(k)λ̃(k, s)eikz

ω2
z = ω2

z0 (1 − ξZ1) Z1(σz) = −
2πc3

ω3
0σ3

z
Im(

Z∥

n )
m=1

eff

σzωz = σz0ωz0 = − cησδ0 (
Z∥

n )
m

eff
=

∞
∑

p=−∞

Z∥(ωmp)

p hm(ωmp)
∞
∑

p=−∞
hm(ωmp)

Effective impedance
Incorrect factor 
leading to κ = 2π

F(z, s) ≈ F1(s)z
d2z
ds2

= −
ω2

z0

c2
z + ηF(z, s) F1 = ∫

∞

−∞
dzλ(z, s)

∂F(z, s)
∂z

=
icIn

2π ∫
∞

−∞
dkkZ∥(k)λ(k, s)λ*(k, s)

Linear part of 
wake force

Average Effective inductance
Linearization

d2z
ds2

= −
ω2

z

c2
z

ω2
z

c2
=

ω2
z0

c2
−

c2ηInLeff

4 πσ3
z →

Correct factor

x3 − x −
cIb

κησz0σ2
δ0(E/e)

Leff = 0

Modified Zotter’s equation

https://cds.cern.ch/record/129783/files/198107013.pdf


A new equation derived from Hassinski equation

• rms bunch length 


-  is sensitive to imaginary part of impedance

- If real part of impedance is large, it also contributes to bunch lengthening
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1) Exact prediction by Haissinski equation
2) A generalized version of Zotter’s equation

“Effective impedance” for bunch lengthening:
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Stretching force average over charge density
Both real and imaginary parts of impedance contribute 
to bunch lengthening if the bunch is deformed

Definition:
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A new equation derived from Hassinski equation

• Relation between the “quadratic” equation and Zotter’s equation


- First, we assume a Gaussian bunch to approximate the Hassinski distribution.


- Second, we approximate the ring impedance by . Immediately, we obtain Zotter’s equation.


- We conclude that Zotter’s equation is one special case of self-consistent “quadratic” equation. ZE is only a good 
approximation for electron storage rings where the inductance is the dominant impedance.
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1)  and  depends on the imaginary and real parts of impedance, respectively.

2) For a full understanding of broad-band impedance, we need to measure both  (real part) and  (imaginary part).
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Potential-well bunch lengthening for various impedance sources

• A table of  and  with Gaussian bunch approximation [1]


- Bunch shortening for positive momentum compaction: Pure capacitance, Free-space steady-state CSR and CWR
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[1] D. Zhou, G. Mitsuka and T. Ishibashi, 
arXiv:2307.01286 (2023).

https://arxiv.org/abs/2307.01286
https://arxiv.org/abs/2307.01286
https://arxiv.org/abs/2307.01286


Example 1: SuperKEKB LER
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Example 2: SuperKEKB HER
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Example 3: SLC damping ring with original vacuum chamber [1]

10[1] R. Warnock and K. Bane, Phys. Rev. Accel. Beams 21, 124401 (2018).

SLC is a special case:
* With original vacuum chamber, 
inductive character is dominant.
* Zotter’s equation does not apply 
because of large resistive impedance

Haissinski distribution Effective impedance

xZeff
∥ (x) = Constant

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.21.124401


Example 4: SLC damping ring with improved vacuum chamber [1]

11[1] R. Warnock and K. Bane, Phys. Rev. Accel. Beams 21, 124401 (2018).

Haissinski distribution Effective impedance

xZeff
∥ (x) = Constant

SLC is a special case:
* With improved vacuum chamber, 
resistive character is dominant.
* Zotter’s equation does not apply 
because of relative large resistive 
impedance

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.21.124401


Summary
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Vlasov-Fokker-Planck equation

“Quadratic” equation

Cubic equation 
(Zotter)

Haissinski equation

Zc equation

Zm equation

Subset diagram

VFP equation:
∂ψ
∂s

+
dz
ds

∂ψ
∂z

+
dδ
ds

∂ψ
∂δ

=
2

ctd

∂
∂δ [δψ + σ2

δ0
∂ψ
∂δ ] Haissinski equation: λ0(z) = Ae

− z2

2σ2
z0

− I
σz0

∫∞
z dz′￼𝕎∥(z′￼)

“Quadratic” equation: x2 − 1 −
cI

2πσz0
Zeff

∥ (x) = 0 Zotter’s equation: x3 − x +
cIb

κηω0σz0σ2
δ0(E/e)

Im(
Z∥

n )
m=1

eff

= 0

Zc equation: zc(I) = Iσz0κ∥

Zm equation: zm = Iσz0𝕎∥(zm)



Summary

• Zotter’s equation is valid with assumptions

- The longitudinal total impedance of the ring can be well approximated by a pure inductance.

- The impact from the real part of the total impedance is negligible.

- The potential well remains well quadratic so that the lengthened bunch is close to Gaussian.


- Applicable cases: NSLS-II, Diamond (light sources with dominating inductive impedances from small discontinuities 
(bellows/flanges) and tapers (insertion devices)) [1]; SuperKEKB LER (colliders with dominating impedances from 
small-gap collimators).


- Non-applicable cases: damping rings (no insertion devices or collimators, SLC damping ring with smoothed 
chamber is a good example), Future Circular Colliders (FCCs, resistive-wall impedance dominates because of large 
ring circumference).


• A simple equation for potential-well bunch lengthening is derived from Haissinski equation, 
useful for correlating impedance computations with simulations and beam-based 
measurements.

13[1] V. Smaluk, NIMA 888, 22 (2018).

https://www.sciencedirect.com/science/article/pii/S0168900218300640


Backup
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Equations derived from Hassinski equation

• Center of mass 

- Starting from the differential equation instead


-  is sensitive to real part of impedance, simply proportional to loss factor .


- The most trivial way of measuring loss factor might be collecting data of power assumptions: RF power, temperature of 
cooling water, …
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Trick: Integrate this equation over z



Equations derived from Hassinski equation

• Peak position of bunch profile 


-  is sensitive to real part of impedance


- From measurement viewpoint,  and  have different meanings.


- Mostly, acc. physicists believe measuring  is trivial. They usually share simulation data of  to experimental experts.


- Practically, it is not trivial to measure  with good accuracy using synchrotron radiation light or using BPM signal.


- However, measuring  using BPM signal is possible (realized at SuperKEKB)
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Realistic BPM signal [1]

[1] T. Ieiri et al., NIMA 606 (2009) 248–256.

https://www.sciencedirect.com/science/article/pii/S0168900209008328


• Inverse problem of Haissinski equation

- Wake potential extracted from simulated or measured bunch profile


- Impedance extracted from wake potential [1]
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Equations derived from Hassinski equation



Some practical examples

• Bunch shortening by free-space CSR/CWR

- Significant bunch shortening/lengthening for positive/negative momentum compaction in simulations for EIC ring 

electron cooler [1]

- Practically, chamber shielding suppresses low-frequency CSR/CWR, such effects have not be observed in 

measurements

18
[1] A. Blednykh et al., PRAB 26, 051002 (2023).

Positive αc Negative αc



Some practical examples

• Using BPM to measure beam phase

- It’s not trivial to detect the center of mass using BPM signals

- Detecting the peak position of the bunch profile using BPM signals (zero-cross point) was developed at SuperKEKB

19
[1] T. Ieiri et al., NIMA 606 (2009) 248–256.

BPM signal measured at KEKB in 2008 [1]

Simulated center of mass did not 
fit the measured data well

Simulated peak position did fit 
the measured data well, 
especially at low bunch currents



Some practical examples

• SuperKEKB LER

- Pseudo-Green function wakes constructed and used inputs of simulations

20

Pseudo-Green function wakes with 0.5 
mm Gaussian bunch Fourier transform of short-bunch wakes Haissinski solutions



Some practical examples

• SuperKEKB LER

- Pseudo-Green function wakes constructed and used inputs of simulations

21

The slopes at zero current have clear 
meanings with given impedance and 
nominal bunch

Effective impedance shows machine 
properties



Some practical examples

• SuperKEKB LER

- Pseudo-Green function wakes constructed and used inputs of simulations

22

Wake potential with different bunch 
profiles

Real part of impedance extracted from 
Haissinski solutions

Imaginary part of impedance extracted 
from Haissinski solutions


