Potential-well bunch lengthening in electron storage rings

Demin Zhou, Gaku Mitsuka, Takuya Ishibashi (KEK) Karl Bane (SLAC)

Acknowledgements

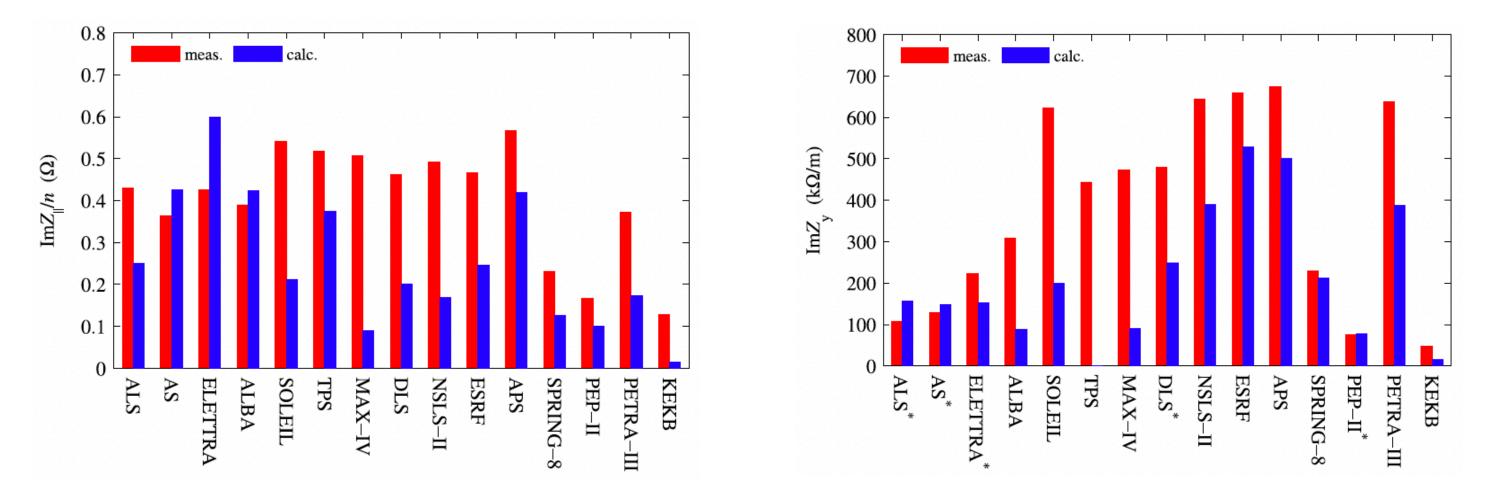
G. Bassi, A. Blednykh, A. Chao, Y. Cai, L. Carver, K. Hirata, R. Lindberg, M. Migliorati, T. Nakamura, K. Ohmi, K. Oide, B. Podobedov, Y. Shobuda, V. Smaluk, and M. Tobiyama

20th Annual Meeting of Particle Accelerator Society of Japan, Nihon Univ., Aug. 30, 2023

Motivation

- Discrepancy between impedance calculations and beam-based measurements lacksquare

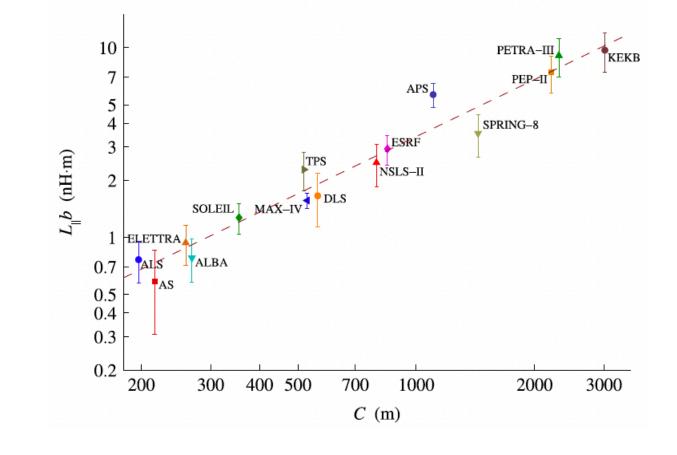
 - Techniques for experimental observations of impedance effects have also matured in parallel.
 - However, discrepancies remain in each accelerator project, to varying degrees [1].



	<i>C</i> (m)	E (GeV)	σ_{t0}^{a} (ps)	$\sigma_{\delta} \ 10^{-3}$	$\alpha \ 10^{-3}$	v _x	v_y	β_x^{aver} (m)	β_y^{aver} (m)	2a (mm)	2 <i>b</i> (mm)
ALS [18]	196.8	1.52	14	0.71	1.59	14.25	9.2	5.0	5.4	96	34
AS [22]	216	3	29	1.02	2.11	13.3	5.2	8.0	14.1	70	28
ELETTRA [19]	259.2	0.9	8	0.36	1.55	14.3	8.2	7.8	6.4	80	32
ALBA [23]	268.8	3	21	1.05	0.89	18.18	8.37	6.6	9.2	72	28
SOLEIL [24]	354.4	2.75	21	1.02	0.44	18.18	10.23	9.0	8.4	80	25
TPS [25]	518.4	3	10	0.89	0.24	26.18	13.28	8.9	9.0	70	32
MAX-IV [26]	528	3	49	0.782	0.306	42.2	14.28	3.8	7.0	22	22
DLS [27]	561.6	3	13	0.96	0.166	27.2	13.37	9.6	12.5	80	24
NSLS-II [28]	791.9	3	11	0.514	0.363	33.22	16.26	12.5	13.7	64	24
ESRF [20]	844.4	6	20	1	0.186	36.44	14.39	19.0	22.7	76	28
APS [20]	1104	7	24	0.96	0.228	36.2	19.27	13.5	16.0	84	34
SPRING-8 [20]	1436	8	12	1.09	0.146	40.14	18.35	17.0	18.1	70	40
PEP-II [29]	2200	3.1	34	0.77	1.23	24.51	23.61	15.9	12.1	110	76
PETRA-III [13]	2304	6	43	1.27	1.2	37.26	33.2	15.7	20.8	80	40
KEKB [29]	3016	3.5	13	0.727	0.32	45.51	43.58	13.1	14.2	94	94

[1] <u>V. Smaluk, NIMA 888, 22 (2018)</u>. [2] <u>B. W. Zotter, CERN-SPS-81-14-DI (1981)</u>.

For several decades, theories and numerical tools for impedance calculations have been "well established".



Zotter's equation [2]:

$$x^{3} - x - \frac{cI_{b}}{\kappa\eta\omega_{0}\sigma_{z0}\sigma_{\delta0}^{2}(E/e)} \operatorname{Im}\left(\frac{Z_{\parallel}}{n}\right)_{eff}^{m=1}$$

We must be cautious: The model can be a source of discrepancies if its assumptions are violated.

Theories for longitudinal single-bunch impedance effects

- Haissinski equation [1] \bullet
 - Exact solution of Vlasov-Fokker-Planck equation below microwave instability threshold.

$$\lambda_0(z) = Ae^{-\frac{z^2}{2\sigma_{z0}^2} - \frac{I}{\sigma_{z0}} \int_z^\infty dz' \int_{-\infty}^\infty W_{\parallel}(z' - z'') \lambda_0(z'') dz''} \qquad I = \frac{I_b \sigma_{z0}}{c \eta \sigma_{\delta 0}^2(E/e)}$$

- Zotter's equation [2]
 - measurements.

$$x^{3} - x - \frac{cI_{b}}{\kappa\eta\omega_{0}\sigma_{z0}\sigma_{\delta0}^{2}(E/e)} \operatorname{Im}\left(\frac{Z_{\parallel}}{n}\right)_{eff}^{m=1} = 0 \qquad \kappa = 1$$

- Connecting Haissinski equation (HE) and Zotter's equation (ZE)
 - HE is self-consistent, knowing $Z_{\parallel}(k)$ means "knowing everything", except for Z_{\parallel}/n .
 - ZE is easy to use, but it has certain applicability conditions.
 - In this talk, we examine ZE and present a new equation for potential-well bunch lengthening.

[1] J. Haissinski, Nuovo Cimento 18, 1 (1973). [2] B. W. Zotter, CERN-SPS-81-14-DI (1981). [3] V. Smaluk, NIMA 888, 22 (2018).

Bottom-up predictions of potential-well lengthening: Impedance calculations \rightarrow Simulations \rightarrow Experiments.

Simple scaling law of bunch lengthening, widely used to extrapolate effective impedance from bunch length

 σ_z/σ_{z0} is the bunch lengthening factor. $\sqrt{2\pi}$ was used in [2]. $4\sqrt{\pi}$ is more consistent to Haissinski equation and experiments [3].

A revisit of Zotter's equation

- How Zotter derived the cubic equation? \bullet
 - Equations of motion + Incoherent tune shift (from effective impedance) + Energy spread condition [1]

$$\frac{d^{2}z}{ds^{2}} = -\frac{\omega_{z0}^{2}}{c^{2}}z + \eta F(z,s) \qquad F(z,s) = I_{n} \int_{-\infty}^{\infty} W_{\parallel}(z-z')\lambda(z',s)dz' = \frac{cI_{n}}{2\pi} \int_{-\infty}^{\infty} dkZ_{\parallel}(k)\tilde{\lambda}(k,s)e^{ikz}$$

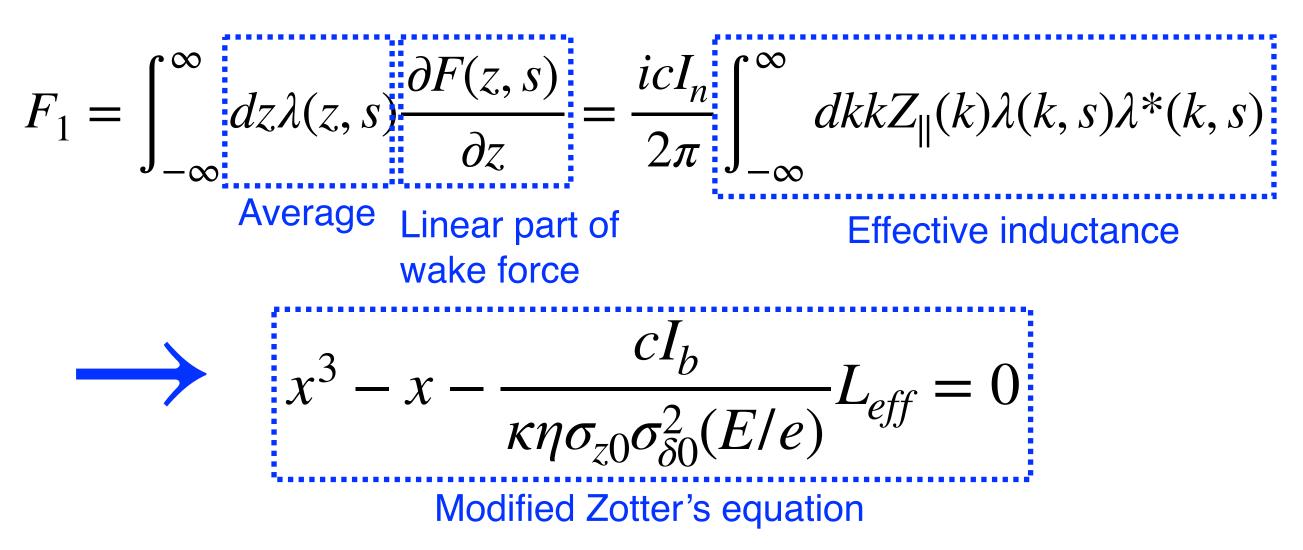
$$\omega_{z}^{2} = \omega_{z0}^{2}\left(1-\xi Z_{1}\right) \qquad \sigma_{z}\omega_{z} = \sigma_{z0}\omega_{z0} = -c\eta\sigma_{\delta0} \qquad Z_{1}(\sigma_{z}) = -\frac{\sqrt{2\pi}c^{3}}{\omega_{0}^{3}\sigma_{z}^{3}} \operatorname{Im}\left(\frac{Z_{\parallel}}{n}\right)_{eff}^{m=1} \qquad \left(\frac{Z_{\parallel}}{n}\right)_{eff}^{m} = \frac{\sum_{p=-\infty}^{\infty} \frac{Z_{\parallel}(\omega_{mp})}{p}h_{m}(\omega_{mp})}{\sum_{p=-\infty}^{\infty}h_{m}(\omega_{mp})}$$
Incorrect factor leading to $\kappa = \sqrt{2\pi}$
Effective impedance

$$\omega_z^2 = \omega_{z0}^2 \left(1 - \xi Z_1 \right) \qquad \sigma_z \omega_z = \sigma_{z0} \omega_{z0} = -c\eta \sigma_{\delta 0}$$

- An alternative way to derive the cubic equation
 - Equations of motion + Incoherent tune shift (from from linearized wake force) + Energy spread condition
 - The standard formulae of effective impedance is unnecessary -

$$\frac{d^2 z}{ds^2} = -\frac{\omega_{z0}^2}{c^2} z + \eta F(z,s) \qquad F(z,s) \approx F_1(s)z$$
Linearization
$$\frac{d^2 z}{ds^2} = -\frac{\omega_z^2}{c^2} z \qquad \frac{\omega_z^2}{c^2} = \frac{\omega_{z0}^2}{c^2} - \frac{c^2 \eta I_n L_{eff}}{4\sqrt{\pi}\sigma_z^3}$$
Correct factor

[1] <u>B. W. Zotter, CERN-SPS-81-14-DI (1981)</u>.



A new equation derived from Hassinski equation

• rms bunch length $\sigma_{_{7}}$

Definition:
$$\sigma_z^2 = \int_{-\infty}^{\infty} (z - z_c)^2 \lambda_0(z) dz = \int_{-\infty}^{\infty} z^2 \lambda_0(z) dz - z_0$$

$$\frac{d\lambda_0(z)}{dz} + \left[\frac{z}{\sigma_{z0}^2} - \frac{1}{\eta \sigma_{\delta}^2} F_0(z)\right] \lambda_0(z) = 0 \quad \longrightarrow$$

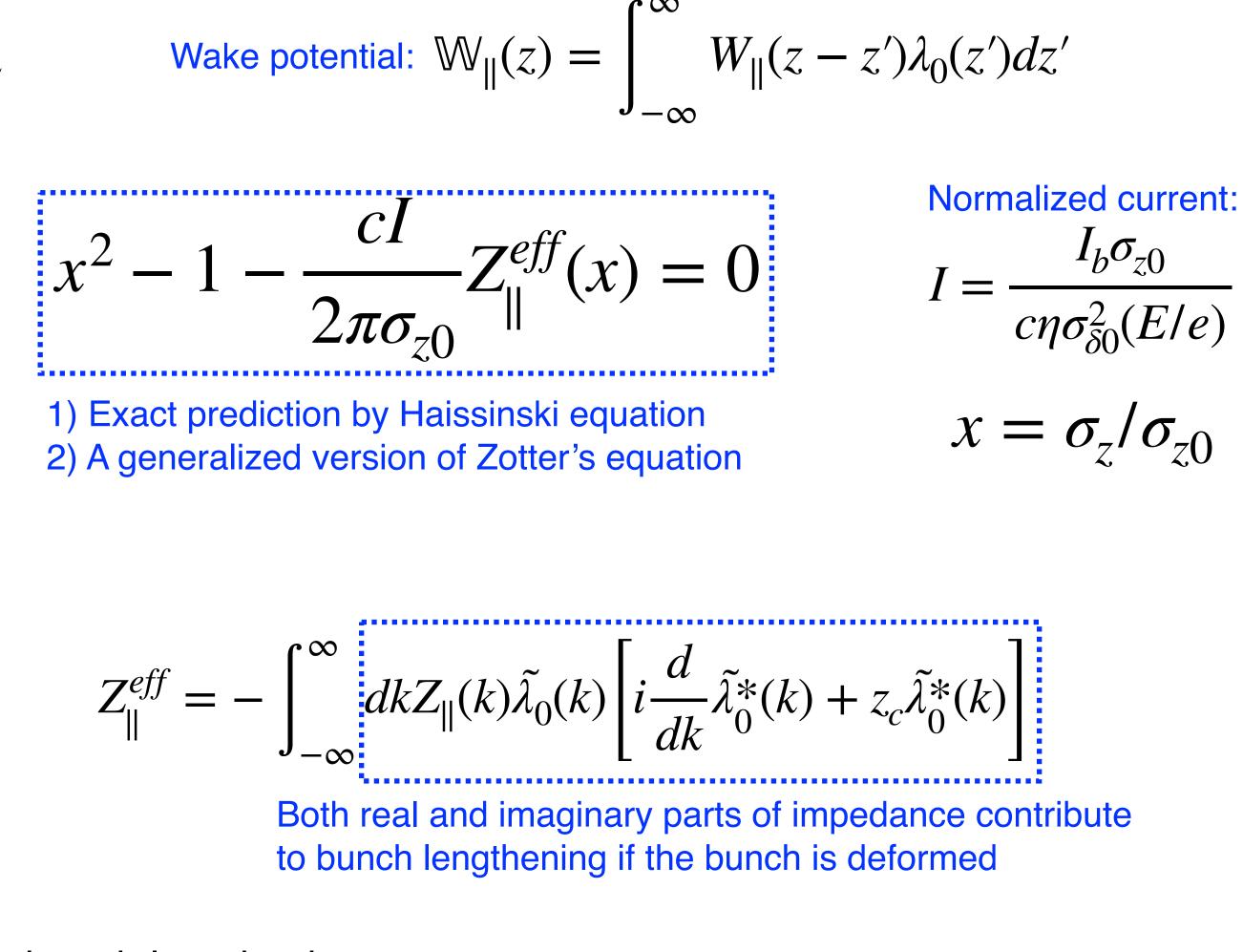
Trick: Multiply by z and then integrate this equation over z

"Effective impedance" for bunch lengthening:

$$Z_{\parallel}^{eff} = \frac{2\pi}{c} \int_{-\infty}^{\infty} dz (z - z_c) \lambda_0(z) \mathbb{W}_{\parallel}(z)$$

Stretching force average over charge density

- σ_{τ} is sensitive to imaginary part of impedance
- If real part of impedance is large, it also contributes to bunch lengthening



A new equation derived from Hassinski equation

Relation between the "quadratic" equation and Zotter's equation

$$x^{2} - 1 - \frac{cI}{2\pi\sigma_{z0}} Z_{\parallel}^{eff}(x) = 0 \qquad Z_{\parallel}^{eff} = -\int_{-\infty}^{\infty} dk Z_{\parallel}(k) \tilde{\lambda}_{0}(k) \left[i \frac{d}{dk} \tilde{\lambda}_{0}^{*}(k) + z_{c} \tilde{\lambda}_{0}^{*}(k) \right]$$

First, we assume a Gaussian bunch to approximate the Hassinski distribution.

 $z_c = \frac{I\sigma_{z0}c}{\pi} \int_{-\infty}^{\infty} dk \mathbf{Re}[Z_{\parallel}(k)]e^{-k^2\sigma_z^2} \qquad Z_{\parallel}^{eff} =$ 1) Z_{\parallel}^{eff} and z_c depends on the imaginary and real parts of impedance, respectively. 2) For a full understanding of broad-band impedance, we need to measure both z_c (real part) and Z_{\parallel}^{eff} (imaginary part).

$$Z_{\parallel}^{eff} \propto \frac{1}{x} \longrightarrow x^3 - x - \frac{cI_b}{\kappa \eta \sigma_{z0} \sigma_{\delta 0}^2 (E/e)} L_{eff} = 0$$

approximation for electron storage rings where the inductance is the dominant impedance.

$$-2\sigma_z^2 \int_0^\infty dkk \mathbf{Im}[Z_{\parallel}(k)] e^{-k^2 \sigma_z^2}$$

- Second, we approximate the ring impedance by $Z_{\parallel}(k) = -ikcL_{eff}$. Immediately, we obtain Zotter's equation. $L_{eff} = -\frac{1}{\omega_0} \operatorname{Im} \left(\frac{Z_{\parallel}}{n} \right)_{cc}^{m-1} = \frac{2\sigma_{z0}}{\sqrt{\pi c}} Z_{\parallel}^{eff}$

 L_{eff} , $(Z_{\parallel}/n)_{eff}^{m=1}$, and Z_{\parallel}^{eff} should be evaluated at nominal bunch length σ_{z0}

- We conclude that Zotter's equation is one special case of self-consistent "quadratic" equation. ZE is only a good

Potential-well bunch lengthening for various impedance sources

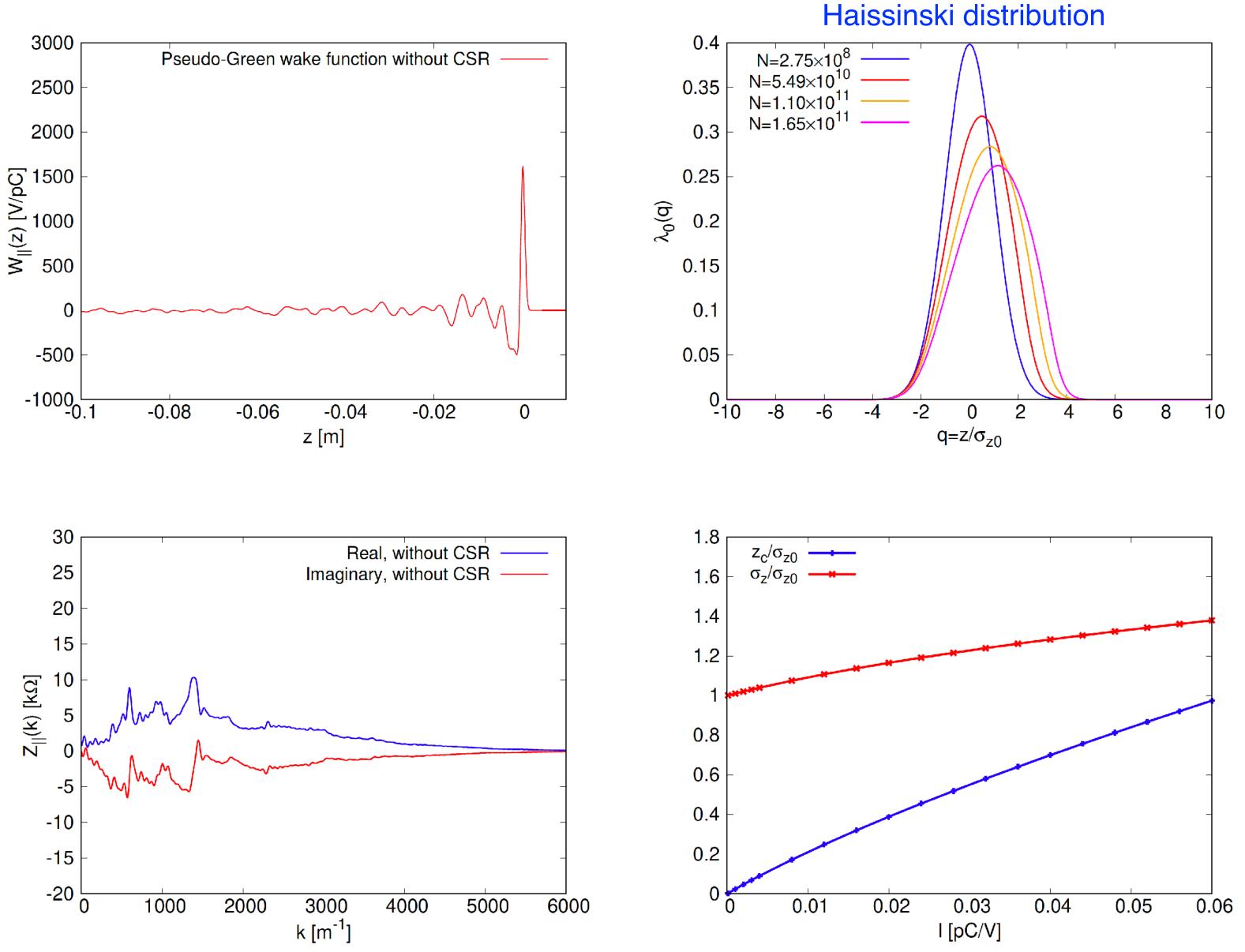
- A table of z_c and Z_{\parallel}^{eff} with Gaussian bunch approximation [1]

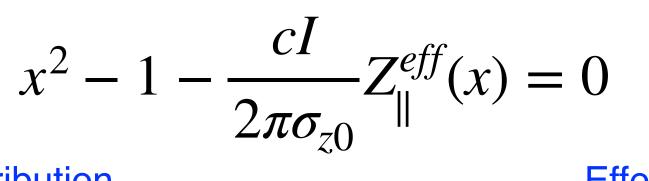
Description	Impedances $Z_{\parallel}(k)$	Effective impedance $Z_{\parallel}^{\text{eff}}(x)$	Centroid shift $z_c(x)$		
Pure inductance	-ikcL	$\frac{\sqrt{\pi}cL}{2\sigma_{z0}x}$	0		
Pure resistance	R	0	$\frac{IcR}{2\sqrt{\pi}x}$		
Pure capacitance	$\frac{i}{kcC}$	$-rac{\sqrt{\pi}\sigma_{z0}x}{cC}$	0		
Resistive wall		$\frac{L}{2\pi b} \sqrt{\frac{Z_0}{2\sigma_c}} \frac{\Gamma\left(\frac{5}{4}\right)}{\sqrt{\sigma_{z0}x}}$	$\frac{L}{2\pi b} \sqrt{\frac{Z_0}{2\sigma_c}} \frac{c I \Gamma\left(\frac{3}{4}\right)}{\pi \sqrt{\sigma_{z0}} x^{3/2}}$		
	L: chamber length; b : chamber	radius; σ_c : Conductivity.	1		
Steady-state CSR in free-space	$\frac{Z_0}{3^{1/3}} \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) \Gamma\left(\frac{2}{3}\right) (k\rho)^{1/3}$	$-\frac{Z_0\Gamma(\frac{2}{3})\rho^{1/3}}{2\cdot 3^{1/3}}\frac{\Gamma(\frac{7}{6})}{(\sigma_{z0}x)^{1/3}}$	$\frac{\frac{3^{1/6}\Gamma^2\left(\frac{2}{3}\right)}{4\pi}\frac{cIZ_0\rho^{1/3}}{\sigma_{z0}^{1/3}x^{4/3}}$		
	ρ : bending radius; assume $2\pi\rho$ for the total length of dipoles.				
Steady-state CWR in free-space [18]	$\frac{1}{16}Z_0\theta_0^2 Lk\left(1-\frac{2i}{\pi}\ln\frac{k}{k_c}\right)$	$-\frac{Z_0\theta_0^2 L}{32\sqrt{\pi}x\sigma_{z0}}\left[Y+2\ln\left(k_c x\sigma_{z0}\right)\right]$	$\frac{cIZ_0\theta_0^2L}{32\pi\sigma_{z0}x^2}$		
	L: wiggler length; θ_0 : wiggler deflection angle; k_c : fundamental frequency of wiggler radiation; $Y = -2 + \gamma_E + \ln 4 \approx -0.0365$.				
Resonator model $(Q > 1/2)$	$\frac{R_s}{1+iQ(k_r/k-k/k_r)}$	$-\frac{\pi R_s \sigma_z}{Q'} \left[\frac{k_r Q'}{\sqrt{\pi}Q} + \sigma_z \operatorname{Im}[k_1^2 w(k_1 \sigma_z)] \right]$	$\frac{cI\sigma_{z0}R_s}{2Q'}\operatorname{Re}[k_1w(k_1\sigma_z)]$		
	R_s : shunt impedance; Q : quality factor; k_r : resonant frequency; $Q' = \sqrt{Q^2 - 1/4}$; $k_1 = \frac{k_r}{Q} [-i/2 + Q']; w(z) = e^{-z^2} [1 - i \operatorname{Erfi}(z)]; \operatorname{Erfi}(z)$: imaginary error function; $\sigma_z = \sigma_{z0} x$.				

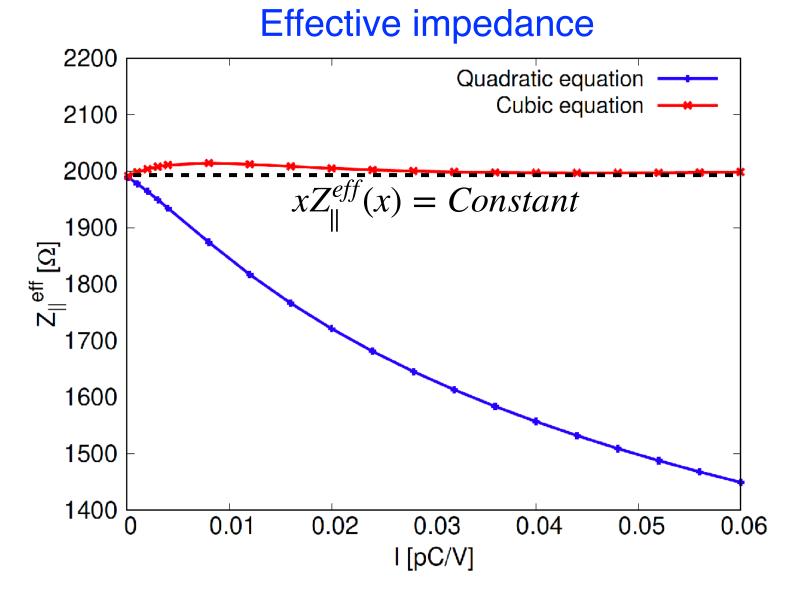
[1] D. Zhou, G. Mitsuka and T. Ishibashi, arXiv:2307.01286 (2023).

Bunch shortening for positive momentum compaction: Pure capacitance, Free-space steady-state CSR and CWR

Example 1: SuperKEKB LER



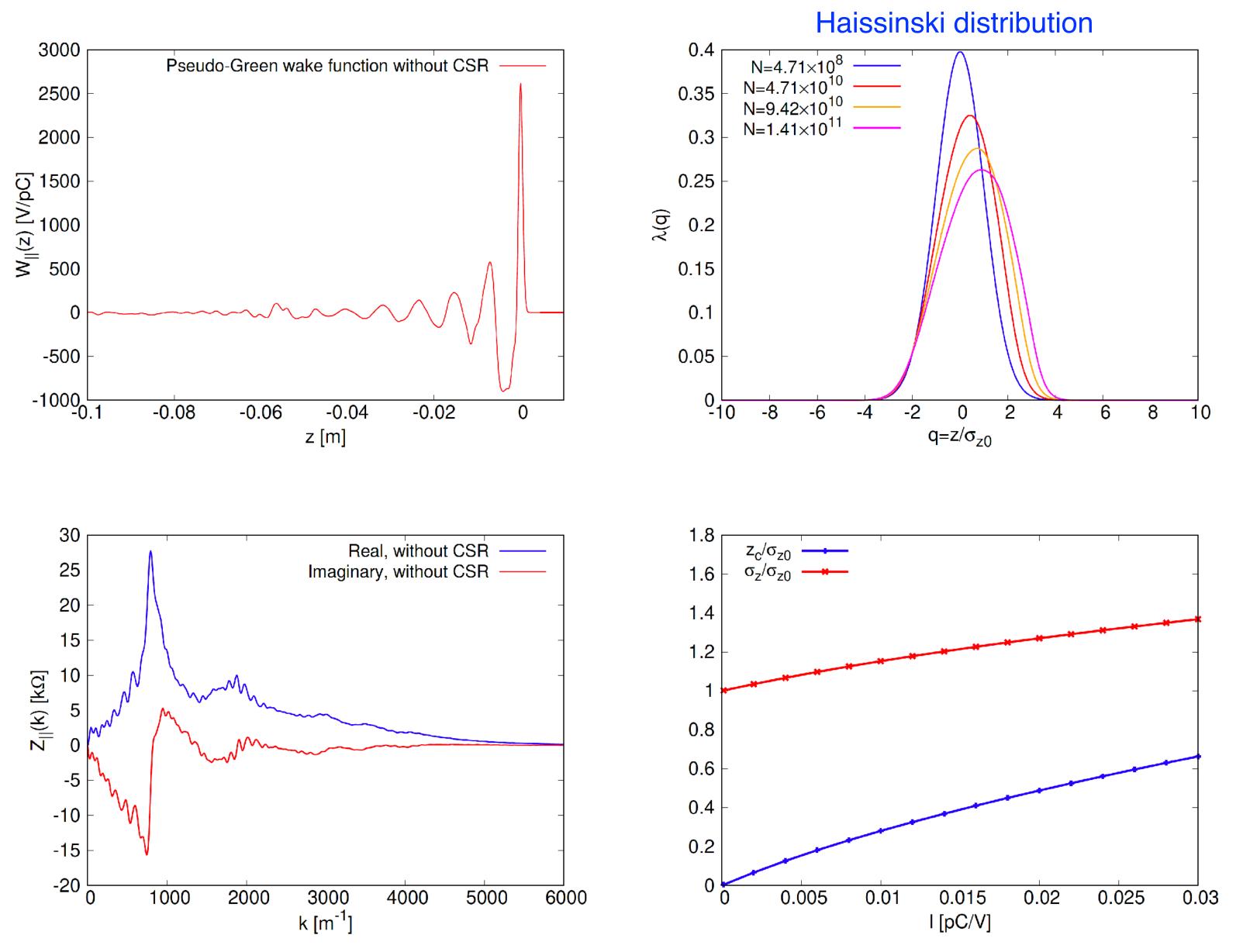


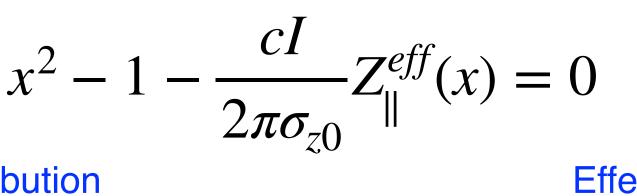


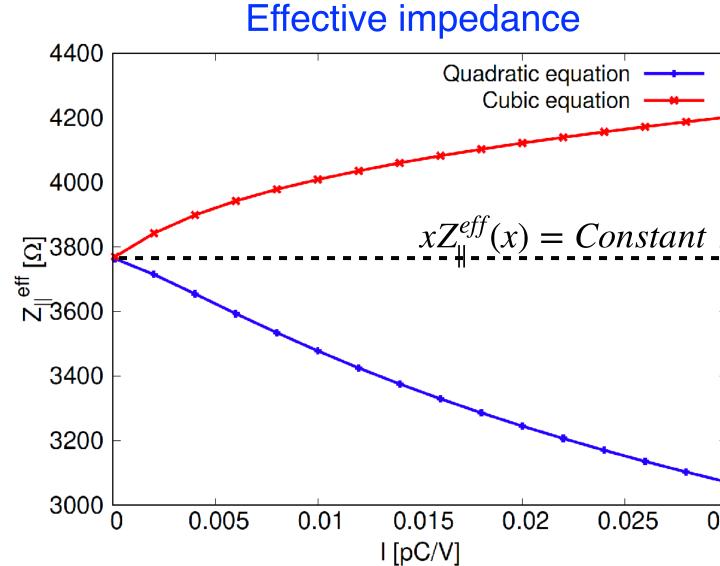
component	k_{z} [V/pC]	<i>R</i> [Ω]	<i>L</i> [nH]
ARES cavities	9.5	671.9	-
resistive-wall	3.0	213.1	9.1
flanges (φ150, HELICOFLEX)	1.0	70.0	-0.7
MO-flanges	0.0	1.4	5.2
welding-gaps	0.0	0.3	1.4
comb-type bellows	0.9	66.3	5.3
longitudinal feedback kicker	0.8	57.6	-0.8
transverse feedback kicker	0.4	26.1	0.0
clearing electrodes [4]	0.0	1.7	2.4
vertical collimators	0.1	8.2	5.9
horizontal collimators	0.3	17.6	5.6
tapered beam-pipes	0.9	61.0	1.4
QCS beam-pipes	0.1	5.1	0.6
others	1.9	137.3	3.2
Total	18.9	1337.6	30.2

T. Ishibashi et al., ICFA Newsletter #85, 2023

Example 2: SuperKEKB HER



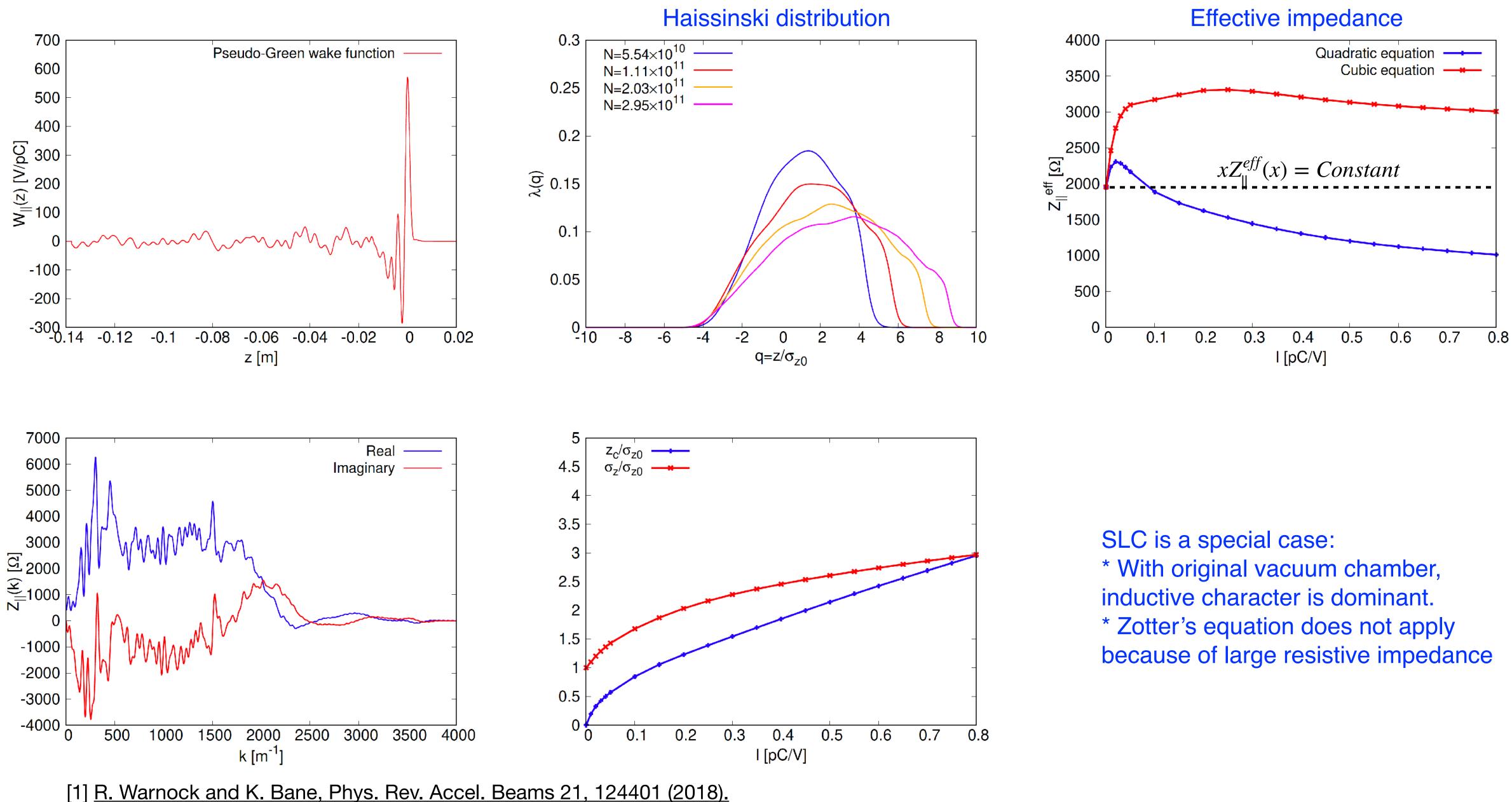




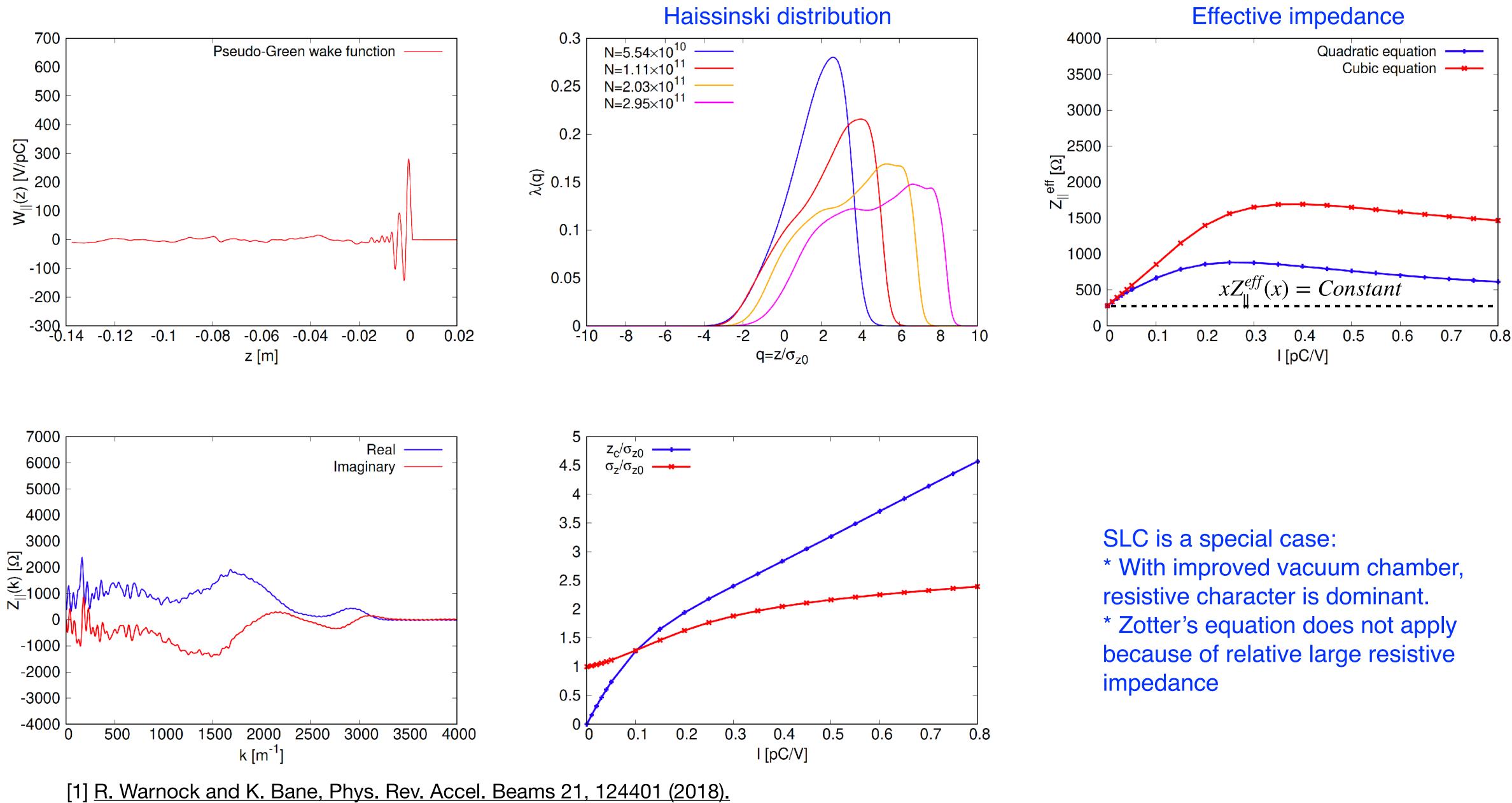
component	k_z [V/pC]	$R[\Omega]$	<i>L</i> [nH]
Superconducting cavity	14.3	845.1	-
ARES cavities	3.8	225.0	-
resistive-wall	4.9	289.5	7.4
flanges (q150, HELICOFLEX)	2.4	142.6	36.4
flanges (race-track, HELICOFLEX)	1.0	60.5	-0.3
MO-flange	0.0	0.5	0.8
welding-gaps	0.0	0.8	1.6
comb-type bellows	0.2	12.9	0.7
contact-finger-type bellows	4.0	238.1	13.0
transverse feedback kicker	0.4	24.5	0.0
BPM	1.2	71.5	1.5
vertical collimators	1.3	76.2	4.0
horizontal collimators	2.6	150.6	7.2
QCS beam-pipes	0.1	6.8	0.5
pumping-screen	0.3	15.8	3.0
others	0.1	5.6	3.0
Total	36.6	2166.0	70.42

T. Ishibashi et al., ICFA Newsletter #85, 2023

Example 3: SLC damping ring with original vacuum chamber [1]



Example 4: SLC damping ring with improved vacuum chamber [1]



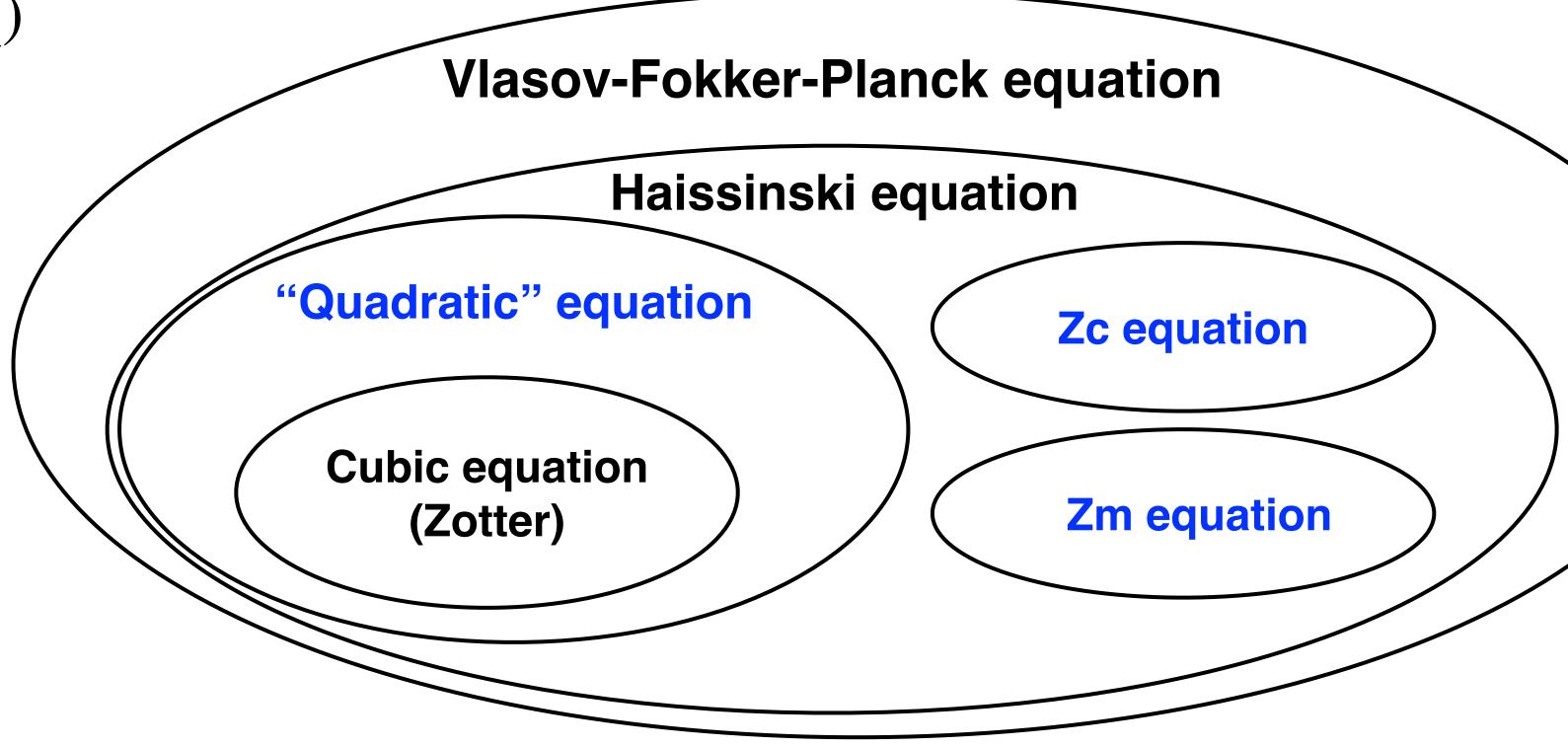
Summary

VFP equation:
$$\frac{\partial \psi}{\partial s} + \frac{dz}{ds}\frac{\partial \psi}{\partial z} + \frac{d\delta}{ds}\frac{\partial \psi}{\partial \delta} = \frac{2}{ct_d}\frac{\partial}{\partial \delta}\left[\delta\psi + \sigma_{\delta 0}^2\frac{\partial \psi}{\partial \delta}\right]$$

"Quadratic" equation:
$$x^2 - 1 - \frac{cI}{2\pi\sigma_{z0}} Z_{\parallel}^{eff}(x) = 0$$

Zc equation:
$$z_c(I) = I\sigma_{z0}\kappa_{\parallel}$$

Zm equation: $z_m = I\sigma_{z0}W_{\parallel}(z_m)$

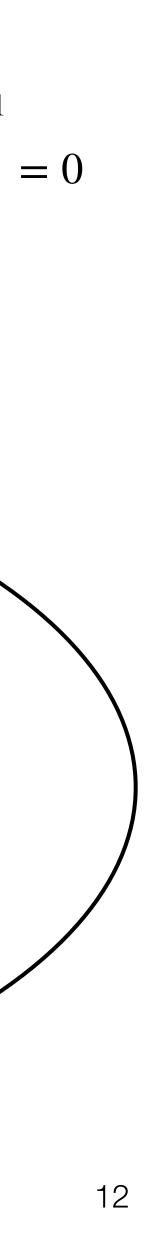


Haissinski equation: $\lambda_0(z) = Ae^{-\frac{z^2}{2\sigma_{z0}^2} - \frac{I}{\sigma_{z0}}\int_z^\infty dz' \mathbb{W}_{\parallel}(z')}$

Zotter's equation:

$$x^{3} - x + \frac{cI_{b}}{\kappa\eta\omega_{0}\sigma_{z0}\sigma_{\delta0}^{2}(E/e)} \operatorname{Im}\left(\frac{Z_{\parallel}}{n}\right)_{eff}^{m=1}$$

Subset diagram



Summary

- Zotter's equation is valid with assumptions
 - The longitudinal total impedance of the ring can be well approximated by a pure inductance.
 - The impact from the real part of the total impedance is negligible.
 - The potential well remains well quadratic so that the lengthened bunch is close to Gaussian.
 - Applicable cases: NSLS-II, Diamond (light sources with dominating inductive impedances from small discontinuities (bellows/flanges) and tapers (insertion devices)) [1]; SuperKEKB LER (colliders with dominating impedances from small-gap collimators).
 - Non-applicable cases: damping rings (no insertion devices or collimators, SLC damping ring with smoothed chamber is a good example), Future Circular Colliders (FCCs, resistive-wall impedance dominates because of large ring circumference).
- A simple equation for potential-well bunch lengthening is derived from Haissinski equation, useful for correlating impedance computations with simulations and beam-based measurements.

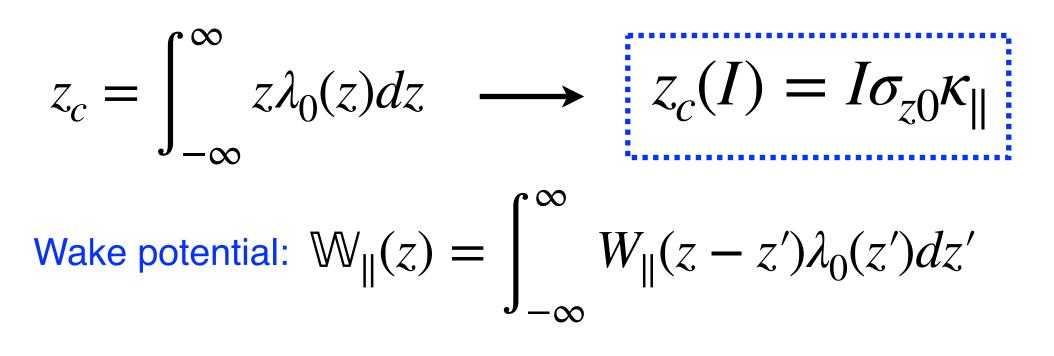
Backup

Equations derived from Hassinski equation

- Center of mass z_c
 - Starting from the differential equation instead

$$\frac{d\lambda_0(z)}{dz} + \left[\frac{z}{\sigma_{z0}^2} - \frac{1}{\eta\sigma_{\delta}^2}F_0(z)\right]\lambda_0(z) = 0 \longrightarrow \lambda_0(z)$$

Trick: Integrate this equation over z



Loss factor:
$$\kappa_{\parallel} = \int_{-\infty}^{\infty} dz \lambda_0(z) \mathbb{W}_{\parallel}(z) = \frac{c}{\pi} \int_0^{\infty} \mathbf{Re}[Z] \mathbb{W}_{\parallel}(z) = \frac{c}{\pi} \int_0^{\infty} \mathbf{R}[Z] \mathbb{W}_{\parallel}(z) =$$

- z_c is sensitive to real part of impedance, simply proportional to loss factor κ_{\parallel} .
- cooling water, ...

 $(z) = Ae^{-\frac{z^2}{2\sigma_{z0}^2} - \frac{I}{\sigma_{z0}} \int_z^\infty dz' \int_{-\infty}^\infty W_{\parallel}(z'-z'')\lambda_0(z'')dz''}$

$Z_{\parallel}(k)]h(k)dk$

The most trivial way of measuring loss factor might be collecting data of power assumptions: RF power, temperature of

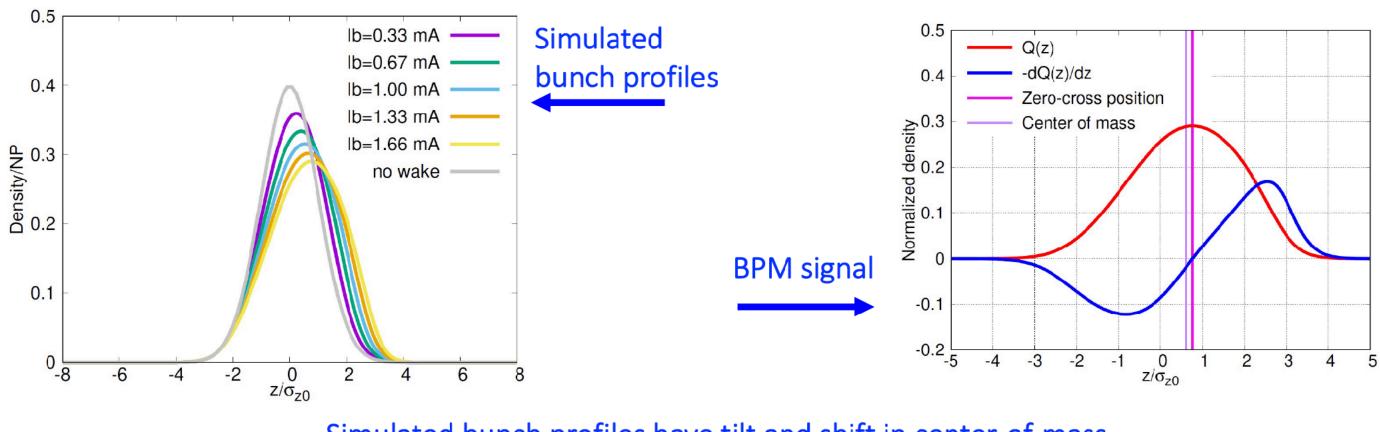
Equations derived from Hassinski equation

• Peak position of bunch profile z_m

$$\frac{d\lambda_0(z)}{dz} = 0 \quad \longrightarrow \quad z_m = I\sigma_{z0} \mathbb{W}_{\parallel}(z_m)$$

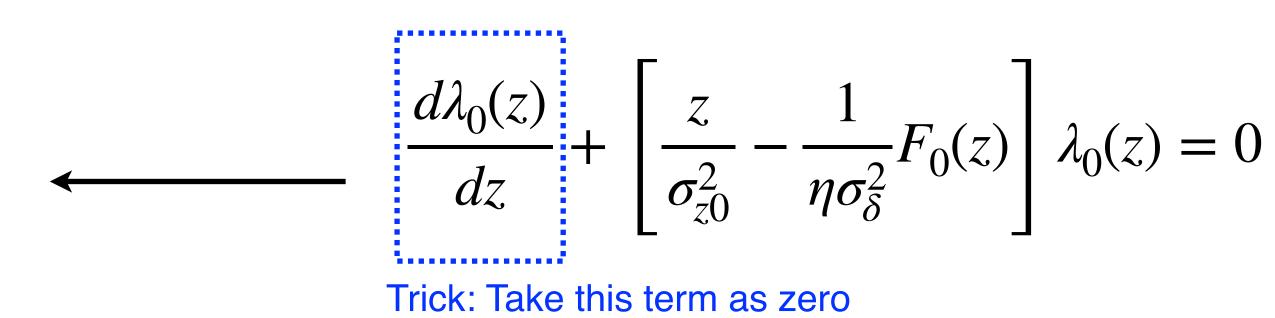
- z_m is sensitive to real part of impedance
- From measurement viewpoint, z_c and z_m have different meanings.

- However, measuring z_m using BPM signal is possible (realized at SuperKEKB)

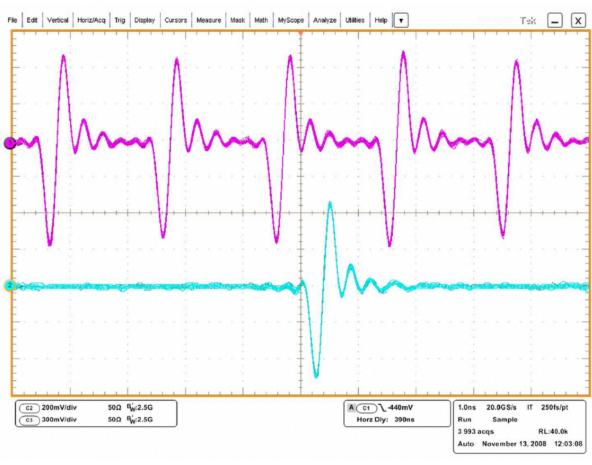


Simulated bunch profiles have tilt and shift in center-of-mass. BPM signal: i(t) = -dQ(t)/dt

-> Zero-cross point of BPM signal is more relevant to peak of bunch profile



Mostly, acc. physicists believe measuring z_c is trivial. They usually share simulation data of z_c to experimental experts. Practically, it is not trivial to measure z_c with good accuracy using synchrotron radiation light or using BPM signal.



Realistic BPM signal [1]

[1] <u>T. leiri et al., NIMA 606 (2009) 248–256</u>.

Equations derived from Hassinski equation

- Inverse problem of Haissinski equation
 - Wake potential extracted from simulated or measured bunch profile

$$\lambda_{0}(z) = Ae^{-\frac{z^{2}}{2\sigma_{z0}^{2}} - \frac{I}{\sigma_{z0}}\int_{z}^{\infty} dz' \int_{-\infty}^{\infty} W_{\parallel}(z'-z'')\lambda_{0}(z'')}$$

$$\downarrow$$

$$\mathbb{W}_{\parallel}(z) = \frac{\sigma_{z0}}{I} \left[\frac{d\ln\lambda_{0}(z)}{dz} + \frac{z}{\sigma_{z0}^{2}} \right]$$

- Impedance extracted from wake potential [1]

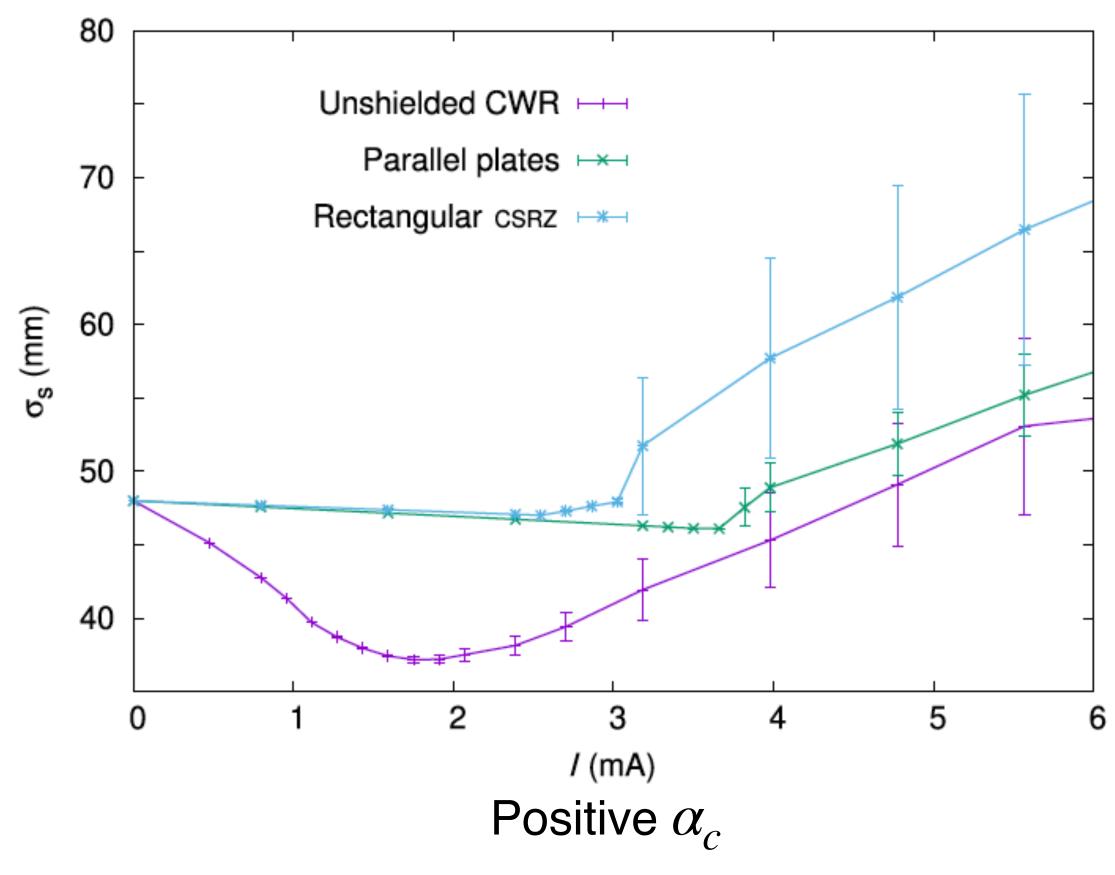
$$Z_{\parallel}(k) = \frac{\sigma_{z0}}{Ic^2 \tilde{\lambda_0}(k)} \int_{-\infty}^{\infty} \left[\frac{d \ln \lambda_0(z)}{dz} + \frac{1}{dz} \right]_{-\infty}^{\infty}$$

[1] A. Chao, Lectures on Accelerator Physics (World Scientific, 2020)

dz''

*Z*__2 $\sigma_{z0}^{\scriptscriptstyle L}$

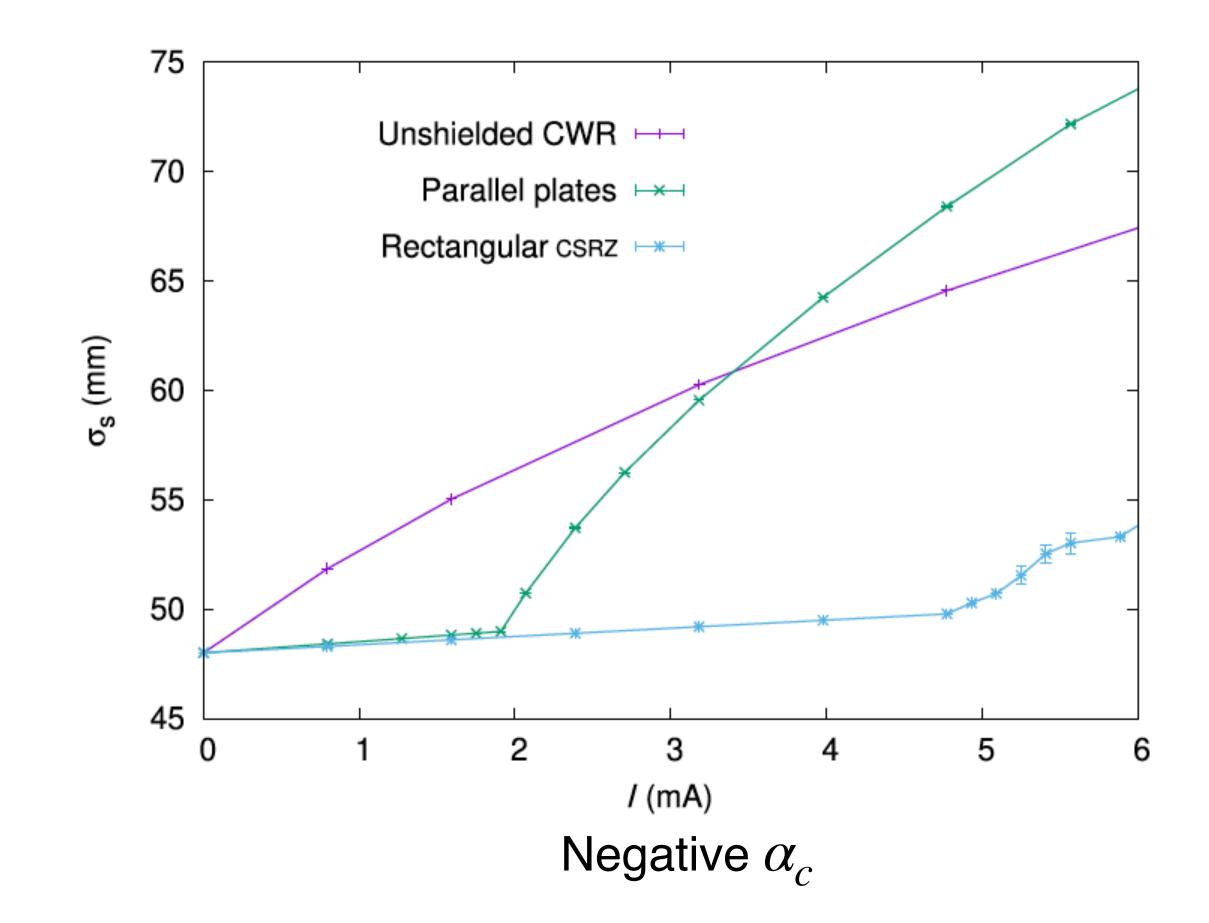
- Bunch shortening by free-space CSR/CWR
 - Significant bunch shortening/lengthening for positive electron cooler [1]
 - Practically, chamber shielding suppresses low-freque measurements



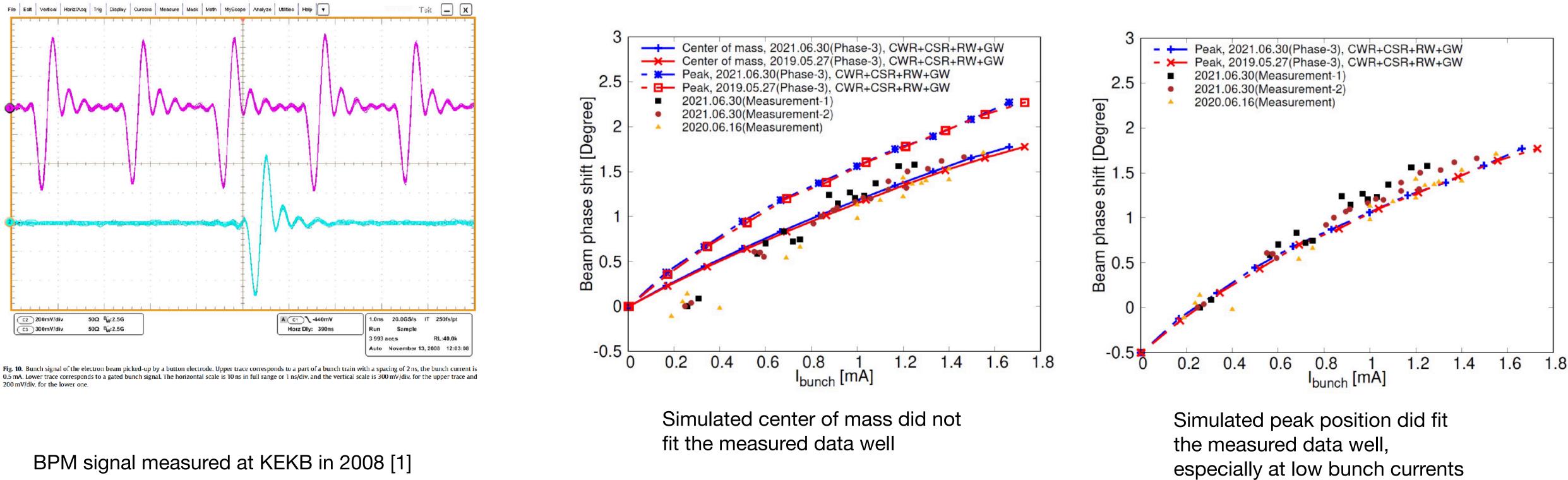
[1] A. Blednykh et al., PRAB 26, 051002 (2023).

- Significant bunch shortening/lengthening for positive/negative momentum compaction in simulations for EIC ring

Practically, chamber shielding suppresses low-frequency CSR/CWR, such effects have not be observed in



- Using BPM to measure beam phase
 - It's not trivial to detect the center of mass using BPM signals



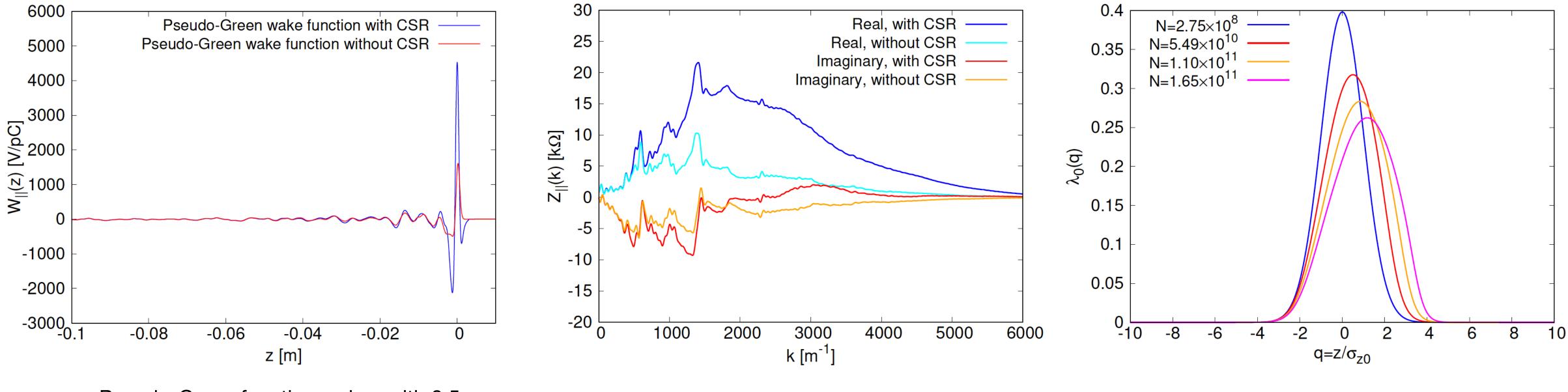
BPM signal measured at KEKB in 2008 [1]

[1] T. leiri et al., NIMA 606 (2009) 248–256.

Detecting the peak position of the bunch profile using BPM signals (zero-cross point) was developed at SuperKEKB

• SuperKEKB LER

Pseudo-Green function wakes constructed and used inputs of simulations

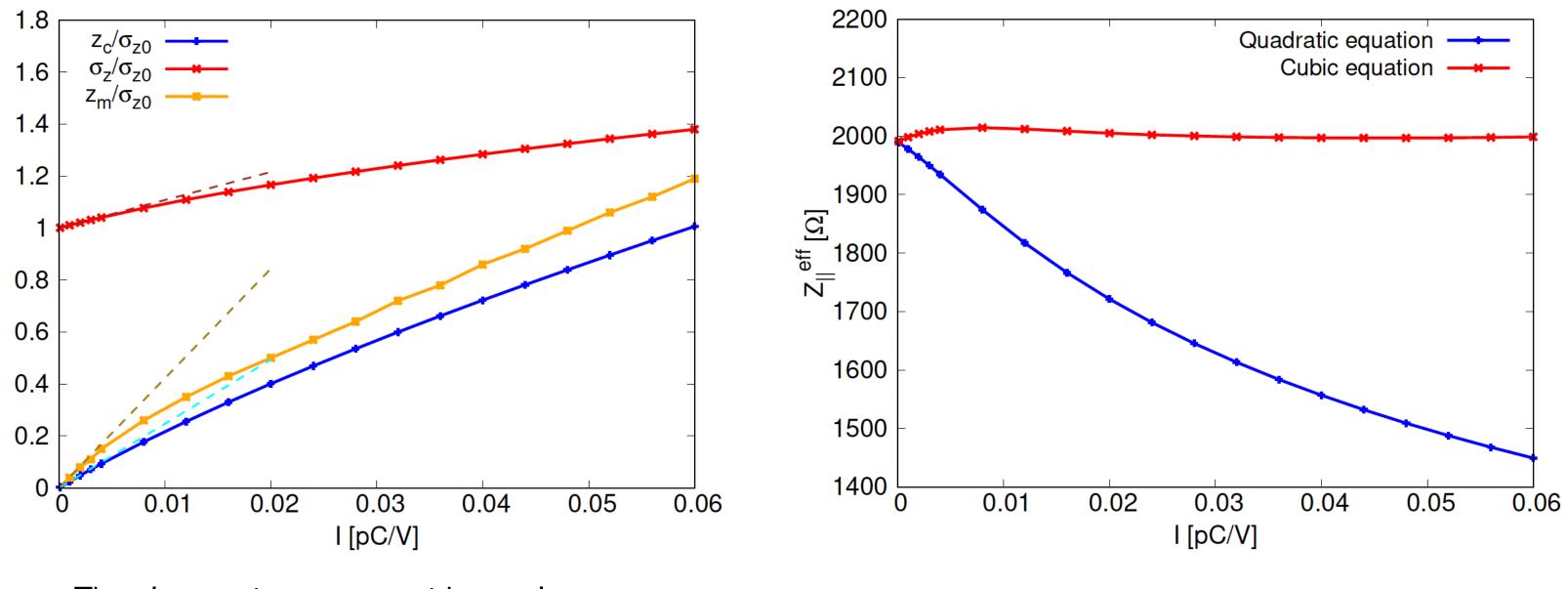


Pseudo-Green function wakes with 0.5 mm Gaussian bunch

Fourier transform of short-bunch wakes

Haissinski solutions

- SuperKEKB LER
 - Pseudo-Green function wakes constructed and used inputs of simulations

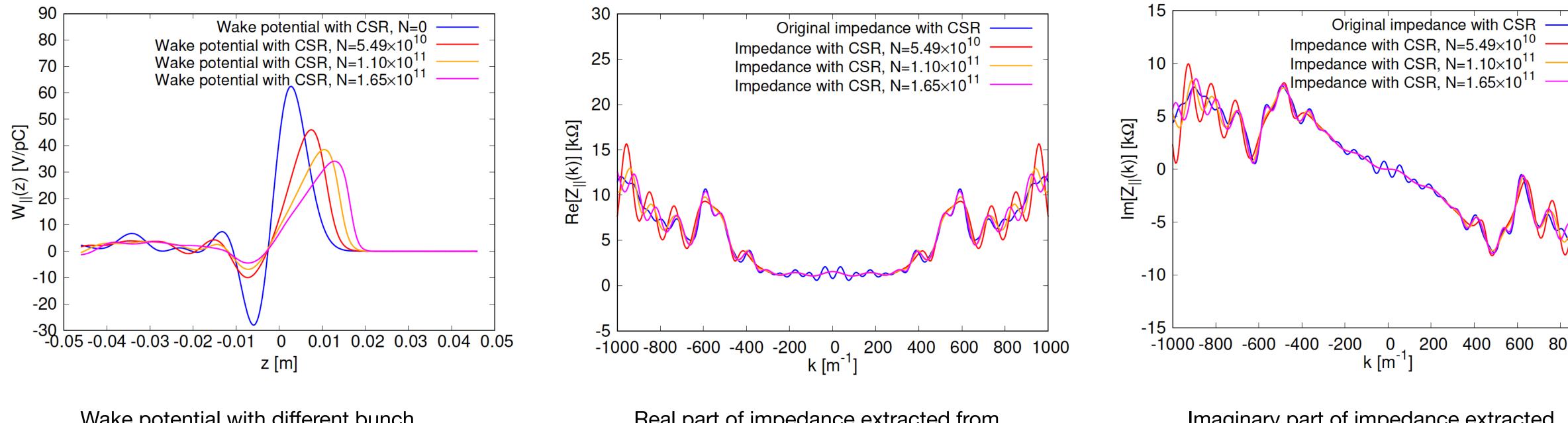


The slopes at zero current have clear meanings with given impedance and nominal bunch

properties

Effective impedance shows machine

- SuperKEKB LER
 - Pseudo-Green function wakes constructed and used inputs of simulations



Wake potential with different bunch profiles

Real part of impedance extracted from Haissinski solutions

Imaginary part of impedance extracted from Haissinski solutions

