単一サイクル自由電子レーザー発振を 可能とする基本原理の実証

田中隆次^A, 貴田祐一郎^B, 橋本智^C, 宮本修治^{C,D}, 富樫格^{B,A}, 冨澤宏光^{B,A}, 後長葵^E, 金島圭佑^E, 田中義人^E ^A理研放射光センター, ^B高輝度光科学研究センター, ^C兵庫県立大高度研, ^D阪大レーザー研, ^E兵庫県立大物質理学

本研究はJSPS科研費JP18H03691の助成を受けて行われました

プロジェクトの概要

ド型FELのパルス長 ~___

ド型FELのパルス長 ~___

ド型FELのパルス長

-サイクルFELの基本概念

ニュースバル蓄積リング

	SPring-8	
SACLA		wsubaru
	周長	118 m
	エネルギー	1 GeV (1.5, 0.5)
	エミッタンス	37 nm.rad
	エネルギー広がり	4x10 ⁻⁴
and the second	バンチ長	33 psec

規模、場所、ビーム特性、レイアウト(長直線部&レーザー導入ポート)等の点で原理実証に最適な施設

実証実験セットアップ

HGHG-FELと類似も、以下の点で相違 ✓シード光が極短パルス(<5サイクル) ✓モジュレータ・ラディエータがテーパー アンジュレータ

プロジェクトの経緯

各機器要素の開発

テーパーアンジュレータ

シードレーザ-

ドパルスのスペクトル測定結果

時間同期系

田中義人他,"ニュースバルにおけるレーザーシーディング法を用いた コヒーレント短パルス光の発生", ニュースバルシンポジウム(2023)

時間同期系

田中義人他、"ニュースバルにおけるレーザーシーディング法を用いた コヒーレント短パルス光の発生", ニュースバルシンポジウム(2023)

コヒーレント光初観測(2022/02)

実証実験の概略と結果

原理実証の方針

400nm(2次光)でコヒーレント光を生成
 - 同一波長ではシード光との分離が困難
 - 高次光でも基本原理が動作することの実証
 各種条件でスペクトル実測

✓シードパルス長(Δt=48fs, 12fs)
✓アンジュレータ周期数(N=24, 12, 6)
✓テーパー磁場勾配(ΔB/B=0, 11%)

基本条件(∆t=48fs,N=24,∆B/B=0)

テーパー導入

シード短パルス化

シード短パルス化

- ド短パルス化&周期削減

ド短パルス化&テーパー導入

- ド短パルス化&テーパー導入

計算値との比較

実証実験のまとめと将来展望

- チャープマイクロバンチ法(短パルス シード&テーパー適用による広帯域化)の実証に成功
- ・残務:パルス幅の実測
 - 輸送光学系の分散が大きく、ラディエータ直下(@真空)でのパルス幅の推定が困難
 - <u>
 - 分散補正無しでの相互相関による測定は理論</u>
 <u>
 予測とよく一致</u>
- 将来展望
 - アト秒パルスの波形制御を可能にする新たな FELの実用化

波形可変型アト秒FEL?

ご清聴ありがとうございました