PASJ2023 TUP57

単胞型空胴による 10A 級大電流ビームの加速の検討

ACCELERATION OF 10-AMPERE-CLASS HIGH CURRENT BEAM BY SINGLE CELL CAVITY

佐古貴行^{#, A)}, 石禎浩^{B)}, 上杉智教^{B)}, 栗山靖敏^{B)}, 森義治^{B)}, 津守克嘉^{C)}, 安藤晃^{D)}

Takayuki Sako^{#, A)}, Yoshihiro Ishi^{B)}, Tomonori Uesugi^{B)}, Yasutoshi Kuriyama^{B)}, Yoshiharu Mori^{B)},

Katsuyoshi Tsumori^{C)}, Akira Ando^{D)},

^{A)} Toshiba Energy Systems & Solutions Corporation

^{B)} Kyoto University

^{C)} National Institute for Fusion Science (NIFS)

^{D)} Tohoku University

Abstract

We study RF acceleration of 10-ampere-class high current beam by the new acceleration method called the single cell cavity. RF numerical simulation showed that the power consumption is within 300 kW per cavity. Numerical solution of the envelope equation showed the possibility of acceleration and transport with a beam duct size of 100 mm for 10-ampere deuteron beam. This report describes the results of the RF numerical simulation and beam calculation.

1. はじめに

イオンビームの初段加速には RFQ(高周波四重極線 形加速器)が広く用いられている。RFQ はカプチンス キーらにより考案され、現在では多くの加速器施設で稼 働している。過去、RFQ の大電流化の試みがなされてお り、ロスアラモス国立研究所(ニューメキシコ、米国)の FMIT RFO で 20 mA [1]、LEDA RFO では 100 mA の陽 子ビームの加速に成功している [2]。六ケ所研究所(青 森、日本)では125mAのCW重陽子ビームの加速に向 け、IFMIF/EVEDA 原型加速器 LIPAc のコミッショニング 試験を継続し、パルスではビーム加速を確認した[3,4]。 RFQ は1台の空胴でバンチング・加速・収束の機能を併 せ持ち、イオンビームの初段加速に適している。一方で、 加速の電場を生成する電極のボア径は mm オーダーで あり、ボア径を広げると必要な高周波電力や加速電圧が 増大する等の課題がある。そのため、電源容量や絶縁、 冷却等の観点で RFQ において 100 mA 級以上の大電 流イオンビーム加速は困難である。

近年、種々の用途で100 mA を超える大電流ビームの 加速が求められている。一例として、原子力発電の核分 裂時に生成される放射性廃棄物の低減・短寿命化が挙 げられる。使用済み核燃料には半減期が10万年を越え る⁷⁹Se、⁹³Zr、¹⁰⁷Pb、¹³⁵Cs等の長寿命放射性廃棄物が含 まれ、その処分方法が課題となっている。解決方法の一 つとして、加速器で得られるビームと反応させ、短寿命核 に核変換させる方法がある。しかしながら、実用的な時 間で変換するためには1A級のビームが必要となり、実 現は困難であった。他の用途として、核融合プラズマの 加熱が挙げられる。ITER[5]においてはプラズマ点火に 必要な外部熱源として NBI(中性粒子ビーム入射加熱: Neutral Beam Injection heating)が主加熱法として用いら れる[6]。ITER-NBIでは1MeVのエネルギーと10A級 のビーム電流値が要求され、静電加速方式を採用して いる。ITER の次の段階となる発電実証を目的とする原 型炉 DEMO[7]においてはプラズマ小半径が ITER より 大型化し、閉じ込めプラズマの中心加熱と電流駆動のた めには、2 MeV 程度のより高いエネルギーが必要となる。 静電加速方式では絶縁耐圧、多孔電極系への熱負荷 等の課題が多く、静電加速に代わる加速技術が模索さ れている。

本稿では従来の RFQ では困難な 1 A 級以上のビー ム加速を実現する可能性のある単胞型空胴と呼ばれる 新たな加速方式について、高周波解析とビーム計算に よる検討結果について報告する。

2. 単胞型空胴

長寿命放射性廃棄物の低減・資源化を目標とする ImPACT 計画において単胞型空胴と呼ばれる新たな加 速方式が提案された[8]。Figure 1 に単胞型空胴の外観 と断面図を示す。単胞型空胴は高周波空胴と収束磁石 用空胴の2種の組み合わせで構成される。高周波空胴 は TM₀₁₀モードを共振モードとする空胴であり、内部に 単一の加速ギャップを有し、加速ギャップにおいて加速 用の高周波電場が生成される。収束磁石用空胴には ビームを収束させるための高温超電導ソレノイドが収めら れている。ソレノイドはビーム軸に沿って配置されており、 大電流ビームを横方向に収束させる。また、収束磁石用 空胴は高周波の影響を避けるため、高周波空胴とは完 全に独立な真空容器で構成される。

上記のように構成された単胞型空胴を基本構成として 複数台並べてビームを必要なエネルギーまで加速する。 RFQやDTLのようなマルチセルの線形加速器と異なり、 それぞれの加速セルが独立した高周波空胴で構成され、 高周波も独立に投入される。そのため、加速セル毎に電 圧や加速位相を独立に調整可能な特長を有する。また、 ビームダクトを大口径化することで、ビームサイズを広げ、 電流密度を低下させることにより、大電流ビーム起因の 空間電荷効果による発散力を低減できることが期待され る。

[#] takayuki1.sako@toshiba.co.jp

PASJ2023 TUP57

Figure 1: Structure of the single cell cavity.

3. 高周波解析

加速空胴の消費電力と加速電場を評価するために三 次元高周波解析を実施した。Table 1 に主な空胴の仕様 を示す。空胴形状は低エネルギー側の上流と高エネル ギー側の下流で2 種類を設定した。これは低速側の上 流ではビーム軸方向を短く設定することでソレノイド磁場 による収束を短い間隔で適用し、高速かつ印加電圧が 高くなる下流側では消費電力を抑制するために空胴外 径を大きくするためである。

Table 1: Cavity Specifications

項目	上流空胴	下流空胴
共振周波数 [MHz]	25	
ビームダクト径 [mm]	100	
空胴外径 [mm]	1300	2050
ビーム軸方向長さ [mm]	330	490
ソレノイド最大磁場強度 [T]	6.3	6.3
最大印加電圧 [kV]	133	300
消費電力(壁損失) [kW]	240	130
シャントインピーダンス [MΩ]	0.07	0.74

Figure 2 左に解析モデルを示す。超電導ソレノイドを 収める真空容器は高周波空胴とは独立であり、Fig. 2 の 凹部に収められる。Figure 2 右に高周波解析の結果とし て基本モードの電場分布を示す。さらに Fig. 3 に加速 ギャップ近傍の z-y 断面における電場分布を示す。加速 ギャップにおいて加速の電場が生成されていることが確 認できる。ビームダクト径を 100 mm まで広げているが、 共振周波数を 25 MHz に設定しており、壁損失は最大で も 240 kW に留まっている。

大口径の空胴においては意図した電場分布が得られ るかが課題になる。これについては既存の ERIT 空胴[9] を用いた電場測定試験により検証した。ERIT 空胴は空 胴内にソレノイドはないが、加速モードが単胞型空胴と 同一の TM₀₁₀モードであり、109 mm×385 mm の大口径 ビームダクトを備える。電場測定試験の結果、解析を再

現する結果が得られている[10]。

Figure 2: 3D Model and electric filed distribution by the numerical simulation.

Figure 3: Electric filed distribution on the z-y section by the numerical simulation.

4. ビーム計算

単胞型空洞による大電流ビーム加速・輸送の検証の ためビーム計算を実施した。ビームが電荷密度一様、各 軸方向の長さがL_x、L_y、L_zの楕円体であり、対象とする 系がソレノイド・高周波空胴・ドリフトスペースのみで構成 されるとき、ビームのハミルトニアンHは次式で書ける。

$$H = \frac{1}{2} \left(p_x^2 + p_y^2 + \frac{1}{\gamma^2} p_z^2 \right) + \frac{1}{2} g^2(s)(x^2 + y^2) + g(s)(xp_y - yp_x) + \frac{\pi f_0 eVT \cos \phi_s}{\beta^3 m c^3 \gamma} \left(-\frac{1}{2\gamma^2} (x^2 + y^2) + z^2 \right)$$
(1)
$$\frac{\delta(s - s_{cavity})}{\delta(s - s_{cavity})} + \frac{2\pi \varepsilon_0 K_p}{Nq} U_c$$

ここで1バンチあたりの粒子個数Nに対して
$$K_p = -\frac{2Nr_p}{\beta^2\gamma^3}$$
 (2)

$$U_{c} = -\frac{\rho L_{x} L_{y} L_{z}}{4\varepsilon_{0}} \int_{0}^{\infty} \frac{d\sigma}{\sqrt{(L_{x}^{2} + \sigma)(L_{y}^{2} + \sigma)(L_{z}^{2} + \sigma)}}$$

$$\left(\frac{x^{2}}{L_{x}^{2} + \sigma} + \frac{y^{2}}{L_{y}^{2} + \sigma} + \frac{\gamma^{2} z^{2}}{L_{z}^{2} + \sigma}\right)$$

$$(3)$$

である。Equation (1)のハミルトニアンの各項は運動エネ

ルギー、ソレノイドポテンシャル、空胴ポテンシャル[11]、 自己場ポテンシャル[12]である。ここで加速ギャップは薄 肉、磁場は一様と近似している。なお、g(s)はソレノイド の収束力に関する項であり、次式で書ける。

$$g(s) = \frac{qB_z(s)}{2m\gamma\beta c} \tag{4}$$

Equation (1)のハミルトニアンから、ビームサイズについて $L_i = \sqrt{5}i_{rms}$ (*i* = *x*, *y*, *z*)として以下のエンベロープ方程式が導出される。

$$\frac{d^2 x_{rms}}{ds^2} + K_x x_{rms} - \frac{\varepsilon_{x_{rms}}^2}{x_{rms}^3} = 0$$
(5)

$$\frac{d^2 y_{rms}}{ds^2} + K_y y_{rms} - \frac{\varepsilon_{y_{rms}}^2}{y_{rms}^3} = 0 \tag{6}$$

$$\frac{d^2 z_{rms}}{ds^2} + \frac{1}{\gamma^2} K_z z_{rms} - \frac{1}{\gamma^4} \frac{\varepsilon_{z_{rms}}^2}{z_{rms}^3} = 0$$
(7)

Equation (5)(6)(7)を同時に解くことでビームの横方向 運動を求めることができる。今回は縦・横各方向の運動 が独立との仮定の下、シンプレクティック則を満たす解法 として Leap-frog 法によりエンベロープ方程式を数値的に 解いた。Table 2 に主な計算条件を示す。

Table 2: Calculation Conditions

イオン種	重陽子
入射エネルギー	0.1 MeV/u
入射エミッタンス(規格化)	$25\pi $ mm mrad
ビーム電流値	10 A

縦方向運動については電場分布の広がりを無視できる理想状態の加速ギャップを配置して多粒子計算を実施した。Figure 4 左に位相とエネルギーの相関を示す。 今回の設定では同期位相を-30 度に設定しておりビームの進展とともに位相方向に収束していることが確認できる。 Figure 4 右に出口の出射エネルギー分布を示す。赤線がガウシアンによるフィット結果で中心値は 2.04 MeV であり、目標とする 2 MeV に到達していることを示している。

横方向運動の計算結果として、Fig.5にx方向のエン ベロープを示す。加速ギャップでの発散とソレノイドによ る収束を繰り返しながら輸送されることが示されている。 ビーム電流値が10Aと非常に大きいため、空間電荷効 果による発散力が強く働く。入射ビームサイズを80mm まで広げ、入射後も最大93mmまで広がることにより、電 流密度を下げることでビーム輸送が可能との結果になっ ている。空間電荷効果は低エネルギー領域ほど速度が 低く強く働くため、入射直後は相対的にビームサイズが 大きい。加速が進んだ後半においては相対的にビーム サイズが小さくなっている。本結果は10Aの大電流ビー ムについて、ビームダクトサイズ100mmに対してマージ ンは少ないものの、ビームが壁面に衝突せず加速・輸送 できることを示している。

Figure 4: Correlation of the beam phase and energy (left). Energy distribution of the extraction beam (right).

Figure 5: Electric filed distribution on the z-y section by the numerical simulation.

5. まとめ

長寿命放射性廃棄物の核変換や核融合原型炉のプ ラズマ燃焼のために必要とされる1Aを越える大電流 ビームの加速について検討している。単胞型空胴と呼ば れる新たな加速方式について高周波解析で壁損失が 240kW程度に収まることを確認した。さらにエンベロー プ計算により加速・輸送を検証、必要なエネルギー 2MeV以上の加速可能性が示された。今後、多粒子計 算による詳細の検証とシステム構成の検討を進める。

謝辞

本研究は、核融合科学研究所共同研究 (NIFS19KOAR023)の支援を受けて実施された。

参考文献

- [1] W.D.Cornelius, IEEE Trans. Nucl. Sci. NS-32, No.5, 1985.
- [2] L.M.Young, Proc. PAC2001, p.309-313, 2001.
- [3] A.Piesent et al., Proc. EPAC2008, p.342-3544, 2008.
- [4] K.Masuda et al., Proc. LINAC2022, p.319-323, 2022.
- [5] https://www.iter.org/
- [6] R.S.Hemsworth et al., New J. Phys. 19 025005, 2017.
- [7] https://www.fusion.qst.go.jp/rokkasyo/ddjst/
- [8] H.Okuno et al., Proc. Jpn Acad., Ser. B95, 2019.
- [9] Y. Mori et al., Proc. PAC09, p.3145-3147, 2009.
- [10] T.Sako et al., Proc. PASJ2022, p.1007-1009, 2022.
- [11] H.Okamoto, NIM A 284, 233, 1989.
- [12] K.Osaki et al., Prog. Theor. Exp. Phys. 093G01, 2015.

本論文に掲載の商品の名称は、それぞれ各社が商標として使用している場合があります。