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Abstract 
The LOCO algorithm based on orbit response matrix 

(ORM), which is the change in orbit at beam position mon-
itors (BPMs) with changes in steering magnets, has been 
widely used for linear optics correction in storage rings. It 
computes the orbit response matrix and fits it to the exper-
iment data linearly as making quadrupole strengths and 
others as free parameters. In order to solve the difficulty on 
convergence of ORM method when the change of focusing 
optics or the effect of nonlinear optics on the closed orbit 
is large, we propose a method based on machine learning. 
The closed orbit of the design lattice produced by each 
steering magnet at BPMs is calculated using ELEGANT 
simulation code which fully includes non-linear compo-
nents and is fitted to the measured closed orbit data in the 
experiment. This method can nonlinearly compute the cor-
rection parameters of the lattice by minimizing the discrep-
ancies between measured and predicted closed orbits. We 
have applied this method to the lattice of UVSOR_III.  

INTRODUCTION 
In order to have a successful operation of particle accel-

erators, the study of linear optics to understand and remove 
or compensate the source of the optics perturbations is re-
quired. Linear optics from closed orbit (LOCO) method, 
which based on the orbit transform matrix (ORM) is a pow-
erful method to fit the measured data to a lattice model to 
determine the quadrupole errors in the machine [1-3]. The 
orbit response matrix consists of orbit deviations at beam 
position monitor (BPM) locations when the orbit correctors 
are changed, one at a time. Each column of the orbit re-
sponse matrix corresponds to the response of one corrector.  

One limitation of the LOCO method is its sensitivity to 
the linear dependency on quadrupole strength, rendering it 
unsuitable for machines with strong nonlinear parameters. 

This new method is similar to LOCO in that it also 
measures closed orbits, may be referred to as nonlinear op-
tics from closed orbit (nLOCO). In the case of fast calcu-
lation, we use a machine learning method based on Bayes-
ian optimization method to obtain the fitted model param-
eters to the measurements quickly.    

In this study, we introduce an innovative approach for 
linear optics correction, incorporating nonlinear compo-
nents through the computation of closed orbit shifts using 
a particle tracking simulation code. We refer to this novel 
method as "nonlinear optics from closed orbit" (nLOCO), 
and it shares similarities with LOCO in its focus on closed 
orbit measurements. To speed up the parameter fitting pro-

cess, we use a machine learning technique based on Bayes-
ian optimization. This allows us to obtain fitting parame-
ters in situations requiring rapid calculations. 

In this paper, we will describe the nLOCO method in 
more detail in section III. In Sec. IV, simulation results are 
shown for UVSOR_III. The conclusion is given in Sec. IV. 

THE LOCO METHOD 
The closed orbit correction can be calculated by the 

LOCO method which originally relies on orbit response 
matrix method (ORM). ORM is based on the linear orbit 
response equation for a small change of j-th dipole kick an-
gle 𝜃𝜃𝑗𝑗 [4]: 

 𝑥𝑥𝑖𝑖 = 𝑀𝑀𝑖𝑖𝑗𝑗𝜃𝜃𝑗𝑗 
where 𝑥𝑥𝑖𝑖 is the measured position at monitor 𝑖𝑖, 𝑀𝑀𝑖𝑖𝑗𝑗 is the 
element in the response matrix. Therefore, the ORM matrix 
can be both measured and calculated theoretically if the lin-
ear optics is known. Therefore, it is an appropriate way to 
judge the agreement between the design and real machine 
is described by a merit function [5], 
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where 𝜎𝜎𝑖𝑖  is the measured noise level on the ith BPM. The 
goal is minimization of 𝜒𝜒2 which is the difference between 
measured and model response matrix. The minimization 
process can be achieved by varying some model parame-
ters based on singular value decomposition (SVD) algo-
rithm.  

However, the convergence of fitting is very much lim-
ited within linear dependence of 𝜒𝜒2  on quadrupole 
strengths, orbit kickers, and BPM gain. The assumption of 
this linearity is usually invalid in real cases. Therefore, one 
should iterate the fitting algorithm. To include the nonlin-
earity, we propose a new method in the next section.  

THE NLOCO METHOD 
Modeling 

The closed orbit shift can be measured experimentally 
and calculated theoretically at each BPM when one orbit 
corrector is changed to give an angular kick to the beam. 
In order to make a judge between measured closed orbit 
and model one, we introduce a function which is the differ-
ence between the measurement and the model closed orbit, 
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where Δ𝑥𝑥𝑖𝑖𝑗𝑗 and Δ𝑦𝑦𝑖𝑖𝑗𝑗  are horizontal and vertical closed or-
bit shift at ith BPM for an angular kick of jth steering mag-
net, respectively. 

In this method, the closed orbit of the model is calculated 
by using a single particle simulation code such as ELE-
GANT [6] which can consider not only nonlinear compo-
nents on the electron beam, but also correct the betatron 
tune for each fitting parameters set. Dispersion functions is 
included as fitting data; Δ𝐸𝐸/𝐸𝐸  , as is done for the LOCO 
method. The electron energy shifts proportional to the dis-
persion at the steering magnet when a horizontal steering 
magnet strength is changed.  

Δ𝐸𝐸𝑗𝑗
𝐸𝐸

=
𝜃𝜃𝑥𝑥𝑗𝑗  𝜂𝜂𝑥𝑥𝑗𝑗
𝛼𝛼𝐶𝐶𝐿𝐿0

 

where 𝜂𝜂𝑥𝑥𝑗𝑗 is the horizontal dispersion at the steering mag-
net, 𝛼𝛼𝐶𝐶 is the momentum compaction, and 𝐿𝐿0 is the storage 
ring circumference defined by RF frequency.  

In order to fit the model closed orbit to the measurement, 
the minimization of the function Δ𝐶𝐶2 is required. The min-
imization can be achieved by surveying the model param-
eters such as strength of quadrupoles, BPM gains and steer-
ing magnet calibrations. In general, the minimization pro-
cess by surveying each parameter while using a particle 
tracking simulation code is computationally expensive in 
terms of CPU time (time consuming).  

Bayesian Optimization Method 
To optimize a black-box function there are a large vari-

ety of optimization algorithms in use [7-9]. For the func-
tions which are noiseless and do not require significant 
time, local optimization methods can be used with very 
strong performance. While for expensive functions which 

take a long time to evaluate, there are some global optimi-
zation algorithms which can approach the global optima in 
better performance on time limited and noisy measure-
ments. Recently Bayesian optimization method has been 
attracted in accelerator community [10, 11]. 

Bayesian optimization is a framework to optimize a 
costly function which may perform a large number of eval-
uations. It consists of two elements; a surrogate model 
which is a mathematical model to approximate the real ob-
jective function and an acquisition function which de-
scribes the strategy to determine the next points in input 
space to measure. The surrogate model is usually generated 
through Gaussian process regression that returns a proba-
bility distribution of possible functions compatible with 
previous evaluations and is much faster and/or cheaper to 
evaluate. The model can predict the most probable value of 
objective function at an unexplored location and provides 
an uncertainty for this prediction. Then the model predic-
tions and their uncertainties are combined into an acquisi-
tion function to determine the next parameters to sample. 
After the evaluation, the model is refined with the newly 
gathered information. This process is repeated iteratively 
to find the optimum parameters that optimize the objective 
function. 

APPLICATION 
The lattice of UVSOR_III [12, 13] is formed by 8 iden-

tical dipoles, 32 quadrupoles grouped in 4 families and 5 
sextupoles families. The ring has 8 straight sections and six 
of them are occupied with undulators of various kinds is 
significant at the beam energy 750 MeV. Beam diagnostics 
used for lattice corrections consists of 24 BPMs. 

The nLOCO has been applied on the lattice design and 
beam diagnosis to discover quadrupole gradients of 
UVSOR_III storage ring. The fitting parameters for 
UVSOR_III are 40 quadrupole strengths, 48 horizontal and 
vertical BPM gains (2 × 24), and 35 steering magnets cali-
bration. There is a total of 123 fitting parameters. The most 
straight forward way to fit the parameters is completely 
surveying the fitting parameters. If we examine at least 5 
values for each parameter, the number of running the sim-
ulation code will be around 5123, which is very expensive 
in CPU time. To decrease the number of running simula-
tion code, we used Bayesian optimization method through 
GPyOPT algorithm [14] to have better performance on 
time. This algorithm can calculate the optimum fitting pa-
rameters by modelling the data points with Gaussian pro-
cess regression and using acquisition functions to filter out 
the maximum information about the location of the mini-
mum of function Δ𝐶𝐶2. Therefore, it can approach to opti-
mum fitted parameters in small number of iterations as 
shown in Fig. 1.  In this calculation, Δ𝐶𝐶2, the difference be-
tween evaluated closed orbit by ELEGANT and measure-
ment one, is objective function for each trial solution. For 
the acquisition function which is defined as the target for 
selecting next trial solution, we chose the lower confidence 
bound (LCB) with GP model as a prior function. Figure 1 
(up) represents the distance between consecutive’s evalua-

 

 
Figure 1: Convergence plots of bayesian optimization 
method. 

Proceedings of the 20th Annual Meeting of Particle Accelerator Society of Japan
August 29 - September 1, 2023, Funabashi

PASJ2023  TUP50

- 439 -



tions in terms of the number of times has evaluated the ob-
jective function Δ𝐶𝐶2. Figure 1 (botom) shows that Bayesian 
optimization method can approach the fitted parameters af-
ter 500 iterations (it takes around 7 hours). While the sur-
veying method to find the fitted parameters needs at least 
5132 of running simulation code which requires some pro-
cessor days to complete. 

 
Figure 2: beta function before (green and yellow) and after 
(blue and red) correction with nLOCO. 

 
Figure 3: Comparison of measured (green star) and model 
dispersion function before correction (red), after correction 
(blue). 

Figure 2 compares the designed betateron function for 
before and after applying nLOCO. Figure 3 shows the dis-
persion function measurement compared with the model 
before and after fit by nLOCO. Clearly the measured dis-
persion function differs significantly from the designed one. 
After correction by nLOCO method, the model is fitted to 
the measurements. The initial Δ𝐶𝐶2 which is 1.2 × 10-5, is 
reduced to 8.19× 10-6, after 400 run iteration numbers. The 
gradient of each quadrupole magnet has been shown in 
Fig. 4. 

CONCLUSION 
We propose a new method to measure the linear optics 

and coupling of a storage ring with BPM data. This method 
called nLOCO is an effective and robust solution to non-
linear fitting problems with hundreds of variable fitting pa-
rameters. In this method, a particle tracking simulations 
code has been used to include the nonlinear components. 
To have better performance on time, we used Bayesian op-
timization method to minimize the difference between the 
measurements and the model closed orbit fast. BPM gains 
and calibration of the correctors are included in the fitting. 

A simulation was done with the UVSOR_III storage ring 
lattice to find out the gradient of each quadrupole strength 
error, correct the beta function and dispersion. It can also 
obtain the calibrations of BPM and corrector. 
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Figure 4: Quadrupole strengths designed (red) after 
nLOCO (blue). 
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