PASJ2023 THP36

KEK iCASA における ILC に向けた陽電子源開発の現状と計画 PRESENT STATUS AND PLAN ON DEVELOPMENT OF POSITRON SOURCE FOR ILC IN KEK iCASA

榎本嘉範*,福田将史,森川祐,早野仁司

Yoshinori Enomoto *, Masafumi Fukuda, Yu Morikawa, Hitoshi Hayano High Energy Accelerator Research Organization

Abstract

This report summarizes present status and plan about development of a electron driven positron source for ILC, focusing on the activity of KEK iCASA positron group. Four major elements, positron production target, Flux Concentrator (FC), accelerating structure after the target, replacement mechanism of activated components, are described.

1. はじめに

高エネルギー加速器研究機構(KEK)加速器研究施設 応用超伝導加速器イノベーションセンター(iCASA)で は、超伝導加速空洞をはじめとして、ILC建設に必要と なる様々な技術開発を行っている。中でも粒子源はナ ノビーム技術、超伝導加速空洞と並び、計画実現のた めの重要技術と位置づけられており、2022年9月から iCASA内に新たなグループを立ち上げて、開発を進め ている。本稿では粒子源の中でも陽電子源、とりわけ 電子駆動型と呼ばれるタイプに関して、我々のグルー プで進めている開発の現状と計画を述べる。

2. 目標パラメータ

Table 1: Comparison of Parameters on Positron Sources for SuperKEKB and ILC

Project	SuperKEKB	ILC
e^- beam on target		
energy (GeV)	3	3
bunches per pulse	2	66
repetition (Hz)	50	$100(300)^1$
beam power (kW)	3.5	74
e^+ beam after Dumping Ring		
N_{e^+}/N_{e^-}	0.4	>1

Table 1 に開発目標としているパラメータを SuperKEKB の陽電子源と比較する形でまとめる¹。ま た過去、現在、将来の様々なプロジェクトにおける陽 電子源の性能を、横軸に一次電子ビームパワー、縦軸 に陽電子生成捕獲効率を取ってプロットしたもの Fig. 1 に示す。生成された粒子が一度しか衝突しないリニア コライダーでは、円形コライダーと比べて粒子源に対 する要求が厳しくなる場合が多い。ILC ではこれまで に実現した最もハイパワーな陽電子源である SLC の ものと比較して、3 倍ものビームパワーが必要になる

Figure 1: Primary electron beam power on target and capture efficiency of positron sources for various projects.

と見込まれている。同時に効率も現在最高性能である SuperKEKBと比べて 2.5 倍を目指している。

3. 全体設計と4つの開発項目

陽電子源は中性子源やミューオン源などの他の二次 粒子源と比べて、二次粒子を生成後、捕獲、加速する という点が大きく異なる。そのため陽電子生成標的だ けでなく、マグネットや加速空洞といったコンポーネ ントを標的直後に配置する必要がある。エミッタンス やエネルギー拡がりが悪い二次ビームをなるべく効率 的に集めるには、標的のなるべく近くに機器を置く必 要があるが、標的からの二次粒子のシャワーが大量に 当たる中で、安定運転を実現するのは容易ではない。 加えて他の大強度ターゲットとも共通な問題ではある が、事前に大強度ビームを使った試験ができないため、 ビームに起因する諸問題に対しては、これまでの経験 と入念なシミュレーションによる検討で対処するしか ない。これらを踏まえた上で、ビーム物理的、電磁気 的、熱的、機械的、放射線的に問題のない全体設計を行 えるかどうかが陽電子源開発の鍵を握っている。幸い

^{*} yoshinori.enomoto@kek.jp

¹ パルスは不等間隔で1秒あたり100パルスであるが、最小 パルス間隔は3.3 ms。

Figure 2: Cross sectional view of the electron driven positron source under development.

KEK では TRISTAN 以来長年に渡って陽電子源を開発、 運用してきた実績と経験 [1] があるため、既存のレイア ウトを参考にしつつ改良を検討していくことができる。 Figure 2 に現在検討中の陽電子源の 3D モデルを示す。

全体設計に加えて、ILC の場合は要求が非常に高い ため、個別のコンポーネントについても新たな開発が 必要になってくる。具体的には

- 陽電子生成標的
- フラックスコンセントレーター (FC)
- 標的直後の加速管
- 放射化した機器の交換機構

の4点が特に重要と考えられており、本稿ではそれぞ れについて以下で現状を述べる。

4. 陽電子生成標的

Figure 3 に現在設計中の陽電子生成標的の様子を示 す。陽電子生成標的は通常タングステンまたはタング ステン合金が用いられる。ILC の陽電子源においてもタ ングステンをベースとした材料を採用する予定でいる。 ただし SuperKEKB のような固定式では冷却が不足する ため、回転式のターゲットを採用する。回転ターゲッ トは既に J-PARC ミューオンターゲット [2] や RIKEN RIBF ターゲット [3] で運転実績があるが、今回の陽電 子源ターゲットの特徴として、以下の要求がある。

- 水冷であること
- 超高真空仕様であること
- スペースの制約が大きいこと
- ・標的サイズが直径 50 cm、重量が約 50 kg 程度と大
 きいこと

回転機構に加えて、標的であるタングステンとヒー トシンクとなる銅の接合も重要な課題である。タングス テンと銅は熱膨張率が大きくことなるため、発熱時に接 合部に熱応力が生じる。条件にもよるが、概算の見積も りでは 100 MPa 程度の応力が生じる可能性は十分ある。 したがって、機械的にしっかり接続方法の検討が重要と なる。加えて温度差を抑えるために熱接触が良いことも 必要である。SuperKEKB では HIP(Hot Isotropic Pressing) を採用したが、今回は SPS(Sparc Plasma Sintering) とい

Figure 3: Positron production target with rotating mechanism.

う方法も検討している。今年度は試験片を用いて幾つ かの条件を試し、実際に引張試験や熱負荷試験を通し て性能評価することを目指して開発を進めている[4]。

これらを踏まえて、現在設計中の陽電子生成標的の 様子を Fig. 3 に示す。

5. フラックスコンセントレータ

フラックスコンセントレータ (FC) はマッチングデ バイスの一種で、標的直後に置かれ、標的からの角度 広がりの大きな陽電子ビームを、後段の加速管のアク セプタンスに合うよう、位相空間上で回転する為に使 われる。元々は SLAC で開発されたものであるが [5]、 SuperKEKB でも採用されている [6]。ILC では、繰り 返し、要求磁場、パルス幅、アパーチャーに対する 要求がいずれも SuperKEKB に比べて高く、その結果 SuperKEKB の 10~20 倍である、10 kW オーダーの発熱 が想定されている。そのため水路のレイアウトを初め とした冷却機構の検討、最適化が重要で、本体だけで なく、フィードスルーやフランジ、給電ラインも含め た熱設計を進めている。また電源に対する要求も極め て高く、現在の仕様では、電圧 20 kV、電流 35 kA、パ ルス幅 10 us、繰り返し 300 Hz のパルス電源が必要であ り、これは SuperKEKB の FC 電源の 30~40 倍のパワー に相当する。これを実現するためには、負荷に蓄えら れたエネルギーを回収して、再利用する機構を備えた 電源の開発が必要と考えられる。

Figure 4 に CST studio による電磁界、熱解析の結果を 示す。温度は場所によって大きく異なるが、標的直後 の内径が最も狭い部分が最大で、局所的には 240°C を 超える部分もある。無酸素銅は通常 200°C を超えると 軟化するため、FC の材料には耐熱合金の採用も含めて 検討を行っている。

6. 標的直後の加速管

標的直後の加速管は標的からの二次粒子による熱負荷を受ける。SuperKEKBにおいては加速管でロスする RFのパワーに比べて、ビームパワーが小さいため、大きな問題とはならなかったが、ILCの場合は二次粒子 による熱負荷が 10 kW オーダーになると想定されてお り、無視できない。

また陽電子の輸送効率を上げるためにはアイリス部

PASJ2023 THP36

Figure 4: Simulation results using CST studio. Temperature distribution (top) and time variation of temperature at several points (bottom).

の内径はなるべく大きくしたい。加えて ILC では陽電 子の生成において、Table 1 に示したように、66 バン チのマルチバンチ運転が想定されている。ビームロー ディングによるバンチ間の加速勾配変化を抑える為に、 Vg は大きな値でなければならない。さらに、全体をソ レノイドマグネットの中に挿入する必要があり、マグ ネット設計や組み立ての観点から、外径は極力小さく、 外周に突起等がないことが望ましい。これらを満たす 為に、冷却能力を大幅に強化した、L バンドの APS 空 洞の設計を進めている [7]。

7. 放射化した機器の交換機構

放射化した機器のメンテナンスは陽電子源に限っ た課題ではなく、ハイパワー標的を運用する全ての施 設に関わる課題と言える。幸い日本国内では J-PARC、 RIKEN RIBF といった施設が運用中であり、参考になる 部分は多い。一方陽電子源特有の点として、標的を専用 のターゲットステーションではなく、加速器トンネル の中に設置しなければならないという問題がある。そ のため十分な遮蔽を用意するのが現実的でない場合が 多い。SuperKEKB では放射化のレベルがそこまで厳し くないことも有り、現場近くでの作業はなるべく短時 間で済ますことにより被爆を抑えるという設計方針を 採用した。作業性を上げるために極力作業スペースを 取り、ジグや容器も最低限の遮蔽でなるべく軽量とし、 離れた位置まで速やかに移動してから、大きな遮蔽容 器へ移すといった多段階の方法を取っている。作業ト ラブルを避けるため、凝った機構やリモート制御はほ とんど採用していない。しかしながら、ILC において はビーム強度が20倍になることから、遠隔での作業が 必須となる可能性が高い。加えて ILC のトンネルは地 下深く、地上へのアクセスやトンネルには制約がある。 現時点で完璧な解決策が出来上がっているわけではな

いが、テストスタンドでの試作と運用を通して、少し づつ改良と最適化を進めるとともに、広く他施設と情 報交換を進めていく以外に方法なないと考えている。

8. まとめ

ILC の陽電子源開発に関して、課題、現状と iCASA 陽電子グループで進めている内容を述べた。具体的な 設計結果や性能評価については今後それぞれのテーマ 毎に紹介していくことができると考えている。陽電子 源の開発は ILC に限らず、FCCee、CLIC、C3、CEPC と いった将来の電子陽電子コライダー共通の課題であり、 今後も国際的な協力を更に深めつつ進めていく予定で いる。二次粒子の再加速という観点では、これまでは 陽電子特有ということができたが、近年盛り上がりつ つあるミューオンコライダーでも同様の課題があるも のと思われる。ILC の陽電子源はは非常に要求が高く、 慎重な設計が求められるが、かつて 1980 年代から 1990 年代にかけて、SLC の陽電子源開発を通して得られた 知見が現在に至るまで活用されているように、今回の 開発を通して得られた成果が、今後数十年にわたり役 に立つものと期待している。

参考文献

- [1] A. Enomoto *et al.*, "Focusing system of the KEK positron generator", Nucl. Instrum. Meth. Phys. Res. A **281**, 1 (1989).
- [2] S. Makimura *et al.*, "J-PARC MLF ミュオン生成標的", 加速器 18(4), 202 (2021).
- [3] K. Yoshida, "RIBF の RI ビーム生成ターゲットシステム", 加速器 18(4), 241 (2021).
- [4] H. Morikawa *et al.*, "ILC 陽電子生成標的の開発", Proc. 20th Annual Meeting of Particle Accelerator Society of Japan (PASJ2023), Funabashi, Japan, Aug. 2023, FRP37, this meeting.
- [5] A.V. Kulikov et al., "SLC POSITRON SOURCE PULSED FLUX CONCENTRATOR", SLAC-PUB-5473 (1991).
- [6] Y. Enomoto *et al.*, "陽電子源と陽電子生成標的", 加速器 18(4), 269 (2021).
- [7] M. Fukuda et al., "ILC 陽電子捕獲ライナック用 L バンド APS 加速管の設計", Proc. 20th Annual Meeting of Particle Accelerator Society of Japan (PASJ2023), Funabashi, Japan, Aug. 2023, FRP52, this meeting.