

FAST FAULT RECOVERY SCENARIOS FOR THE JAEA-ADS LINAC

Bruce Yee-Rendon*, Jun Tamura, Yasuhiro Kondo, Keita Nakano, Hayanori Takei, Fujio Maekawa and Shin-ichiro Meigo

Nuclear Transmutation & Accelerator Division
Japan Proton Accelerator Research Complex (J-PARC)
Japan Atomic Energy Agency (JAEA)

Acknowledgments: The members of the JAEA-ADS. This work was supported by ADS 補助金.

Contents

- Goal
- Introduction
- Fault-tolerance
 - SRF cavity
 - Magnets
- Conclusions

Goal

The main challenge of a ADS accelerator is the high-reliability demanded.

Fig.1: Beam trips requirements for the JAEA-ADS project ¹.

The performance is higher than the achieved in present operation linacs such as J-PARC linac.

To this end, a reliability-oriented ADS linac design is mandatory.

This work investigated the Faulttolerance compensation schemes (FTCS) for SRF cavity or magnet failures to achieve a fast recovery operation.

Introduction

 Reliability is the probability that a system will perform its intended function under a specified work condition for a specific time¹.

Robust lattice design:

- Simple design.
- Derating components operation.
- Control of the beam loss.

Fault-tolerance:

Serial and parallel redundancy.

Repairability:

- Online and manual tunning.
- Maintenance.

[1] J.L. Biarrotte, Reliability and fault-tolerance in the European ADS project, CERN Yellow Report CERN-2013-001, pp.481-494.

JAEA-ADS linac design

A strong optics design has been developed (and continue...)

- Equipartitioning condition (EP).
- Derating operation of the cavities.
- Control of the beam lost.

Fig. 2: Layout of the JAEA-ADS.

- Half-Wave Resonator (HWR) section
- Single Spoke Resonator (SSR) sections
- Elliptical Resonator (EllipR) sections

Table 1: Main characteristics of the JAEA-ADS accelerator.

Parameter		Beam trip duration
Particle	Proton	
Beam current (mA)	20	
Beam energy (GeV)	1.5	
Duty factor (%)	100 (cw)	
Frequency (MHz)	162/ 324/ 648	
Beam loss (W/m)	< 1	
Beam trips per year [2]	2×10^{4}	$\leq 10 \mathrm{s}$
	2×10^{3}	from 10 s to 5 min
	42	>5 min
Length (m)	429	

Table 2: Lattice configuration in the main linac.

Section	Layout	Length (m)	Periods
HWR	S-C	0.7	25
SRR1	S-C ²	1.7	33
SSR2	$S-C^3$	3.4	24
EllipR1	$DQ-C^3$	5.7	20
EllipR2	DQ-C ⁵	9.9	14

Fault-tolerance

The ability to operate the accelerator with an acceptable beam performance in the presence of undesired behavior of machine components, the so-called Fault-tolerance¹. Two approaches (or a combination of both) are considered:

A) Linac 1 Dipole Target B) Primary linac Secondary linac Switch dipole

Fig. 3: Fault-tolerance using full (A) and partially (B) parallel redundancy.

Serial redundancy

Fig. 4: Fault-tolerance using serial redundancy.

¹J. L. Biarrote et al, "Beam Dynamics Studies for the Fault Tolerance Assessment of the PDS-XADS Linac Design", in Proc. 9th European Particle Accelerator Conf. (EPAC'04), Lucerne, Switzerland, Jul. 2004.

PASJ'21 TUOA01

B. Yee-Rendon

Fault-tolerance strategy

The general strategies is the follows:

1) Fast detection of abnormal element:

- Machine learning prediction (Fast, accuracy depends of the training).
- MPS and beam loss monitor (robust, slow)

2) Fast faulty-element detuning:

- Cold tuner for SRF cavities.
- 3) Beam operation is stopped:

4) Pre-calculated compensation setting are uploaded:

- During the beam commission is required to estimate these parameters.
- Update the base according the element performance.
- 5) Beam operation is resumed:

FTCS flow chart

SRF cavity failures

Fig. 5: ϕ_s and E_{acc} adjustment for FTCS SRF cavity.

Fig. 6: Energy compensation for the FTCS SRF cavity.

Table 3: Summary for the worst SRF cavity's FTCS.

Parameters	SSR1	SSR2	EllipR1	EllipR2
$(\Delta\epsilon/\epsilon_0)_t$ (%)	12.2	1.9	3.5	0.4
$(\Delta\epsilon/\epsilon_0)_l$ (%)	35.8	7.8	4.5	1.4
M_t	0.03	0.06	0.03	0.04
M_l	0.06	0.04	0.09	0.12
$\Delta E/E_0$ (%)	0.00	0.01	0.01	0.00
$\operatorname{Max} E_{pk}(\operatorname{MV/m})$	32.6	35.9	35.4	35.9
$\operatorname{Max} B_{pk}(\operatorname{mT})$	48.3	51.9	66.1	69.3

Several SRF cavity failures

Table 4: Summary of multiples SRF cavity failures.

Parameters	MSRFC	FCRYO
$(\Delta\epsilon/\epsilon_0)_t$ (%)	9.2	1.3
$(\Delta\epsilon/\epsilon_0)_l$ (%)	50	-2.5
M_t	0.04	0.16
M_l	0.16	0.64
$\Delta E/E_0$ (%)	0.01	0.03
$\operatorname{Max} E_{pk}(\operatorname{MV/m})$	35.9	35.9
$\operatorname{Max} B_{pk}(\operatorname{mT})$	69.3	69.3

ndon

10

11

Fig. 9: Horizontal beam envelopes for different models.

Table 5: Summary of beam optics performance for the worst magnet compensation case in each section.

Parameters	SSR1	SSR2	EllipR1	EllipR2
$(\Delta\epsilon/\epsilon_0)_t$ (%)	63.7	8.2	22.1	35.8
$(\Delta\epsilon/\epsilon_0)_l~(\%)$	63.1	10.1	4.6	7.5
M_t	0.08	0.04	0.06	0.12
M_l	0.17	0.04	0.03	0.16
$\Delta E/E_0$ (%)	-0.04	-0.01	0.01	0.00

Fig. 10: Magnets compensation failures.

UOA01 B. Yee-Rendon

Conclusions

- Serial redundancy can be applied from the SSR1 section until the end linac without a severe beam degradation.
- The linac could operate in the presence of multiples Faulty-SRF cavities and even in the case of a full cryomodule failure.
- Thus, it shows the possibility of fast recovery after a failure of a principal component: cavity or magnet.
- Nevertheless, the main limitation comes from the engineering side to reduce the time of:
 - Detection of an abnormal element behavior
 - Detuning the element
 - Application the compensation setting.
- We require a large R&D effort to overcome these difficulties.