PASJ2019 WEPI004

J-PARC 主リングの VHF 空胴のための入力結合器試作機の性能評価 PERFORMANCE TEST FOR PROTOTYPE OF VHF INPUT COUPLER IN J-PARC MR

森田裕一^{#, A)},長谷川豪志^{A)},古澤将司^{A)},山本昌亘^{B)},吉井正人^{A)}

Yuichi Morita ^{#, A)}, Katsushi Hasegawa^{A)}, Masashi Furusawa^{A)}, Masanobu Yamamoto^{B)}, Masahito Yoshii^{A)}

^{A)} High Energy Accelerator Research Organization

^{B)} Japan Atomic Energy Agency

Abstract

In the main ring (MR) of the Japan Proton Accelerator Research Complex (J-PARC), the beam instability during the slow extraction (SX) is a current issue. The improvement of the instability was observed when the longitudinal emittance blow-up was introduced. Effective schemes for the blow-up are required for the further beam upgrade. The introduction of the very high frequency (VHF) cavity with the resonance frequency of ~ 100 MHz is one possible solution. This paper reports the design of the input coupler for the VHF cavity and the results of the performance tests for the prototype coupler.

はじめに 1.

J-PARC (Japan Proton Accelerator Research Complex) の MR (Main Ring) では Slow Extraction (SX) と呼ばれ る手法により、ハドロン実験施設ヘビームを供給している。 SX ではフラットトップ期間において RF 電圧をゼロにして デバンチさせ、3次共鳴を利用してビームを取り出す。

ビーム粒子数を増やすにつれて横方向のインスタビリ ティによると思われる損失がビーム取り出し直前と取り出 し時に見られるようになった。不安定性を抑制する方法と して、MR へのビーム入射時に RF 位相をずらしてダイ ポール振動を発生させ、縦方向のエミッタンスを増やす 方法が採られている。現状では約 50kW のビームパワー による利用運転が実現されている[1]。

更なるビームパワー増強のためには、より効率的な縦 方向エミッタンスの増大が求められる。対策のひとつとし て VHF (Very High Frequency) 空洞による縦方向エミッ タンスの増大が挙げられる。これは CERN の PS (Proton Synchrotron)[2]や BNL の AGS (Alternating Gradient Synchrotron)[3]でも効果が確認されている方法である。

本報告では、VHF 空洞のための入力結合器の設計、 試作機の製作および性能評価試験の結果について述 べる。

VHF 空洞 2.

2.1 縦方向エミッタンスの増大

VHF 空洞と基本波空胴を合わせた RF 電圧 Viは以下 のように書ける。

 $V_t = V_0 \sin 2\pi f_0 t + V_b \sin \left(2\pi f_b t + \psi(t) \right)$ (1)ここで、Vo, foはそれぞれ基本波の電圧と周波数であり、 V_{b} , f_bはそれぞれ VHF の電圧と周波数である。 $\psi(t)$ は、

 $\psi(t) = \Delta \phi_m \sin 2\pi f_m t$

(2)と表される。ここで、 $\Delta \phi_m$ 、 f_m はそれぞれ位相変調の振幅、 変調周波数である[4]。

 $V_b \ge 100 \, \text{kV}, f_b / f_{\text{rev}} \ge 635 (f_{rev} はビームの周回周波数),$ 運転期間をフラットボトムの 0.1 s 間とした場合に BLonD

[#] yuichi.morita@kek.jp

[5]を用いて縦方向エミッタンスの変化を計算すると約4 倍の増大となる[6]。

2.2 構造

VHF 空洞の断面図概略と仕様をそれぞれ Fig.1 と Table 1 に示す。ハッチング部が真空部分である。

Figure 1: Cross-section of the VHF cavity.

Table 1: Specifications of VHF Cavity

共振周波数 [MHz]	117.95
最大電圧 [kV]	50
<i>QL</i> 值	2400以下
位相変調の振幅 Δφ[rad]	π
台数	2

トンネル内の限られたスペースにインストールするため、 λ/4 同軸共振構造とする[7]。共振周波数は空洞端板を 機械的に移動することで微調できる。図中の下部のルー プアンテナは入力結合器である。上部の同様な構造は 50 Ω 終端を表しており、結合度を調整して空洞の Q_L 値 を2400以下とする。これは位相変調に必要なQLの条件 である[6]。

Figure 1 のモデルを用いてギャップ電圧を計算した。

使用したシミュレーションソフトは CST MW Studio である。 入力結合器の結合度を1に合わせ、50 Ω 終端側の結合 度は Q_L が約 2000 となるように調整した。空洞1台当たり の設計電圧 50 kV を得るための入力電力は16 kW であ ることがわかった。

3. 入力結合器の設計と試作機の組立

アンプから空洞までの給電には 120D の同軸管を用い る。同軸管の許容電力容量と伝送損失は径の違いに よって Table 2,3 の値をもつ(Table 2 は周囲温度 50°C、 内導体温度 50°C上昇の場合)。当該値は住友電エシス テムソリューション株式会社製の同軸管の場合である。ア ンプから空洞までの同軸管の長さは約 70 m である。約 100 MHz で 50 kW 以上の電力を許容できる径を選ぶと すると最小の径は 120D である。約 100 MHz であれば 16 kW 程度の電力を 1 kW 以下の損失で給電できることが わかる。

Figure 2: Cross-section of the input coupler.

Table 2: Power Capacity	y of Coaxial Line ((kW)	[8]
-------------------------	---------------------	------	-----

外導体内径 [mm]	50 MHz	100 MHz	200 MHz
77	55	40	30
120	90	70	50
152	105	102	80

Table 3: Power Attenuation of Coaxial Line (dB/100 m) [8]

外導体内径 [mm]	50 MHz	100 MHz	200 MHz
77	0.24	0.34	0.5
120	0.15	0.21	0.31
152	0.12	0.18	0.24

結合器の断面図を Fig. 2 に示す。RF 窓交換が容易と なるようにロウ付けではなくメタルシール (Technetics Group、デルタ、断面径:4.9 mm、アルミニウム)で真空封 止する構造とする。内径側と外径側両方ともメタルシー ルで封止する。内導体はM20ボルト1本、外導体はM10 ボルト 24 本で締結し、この軸力でシールをつぶす。

メタルシールが要求する compression load は 140

N/mm であり、その1割増しの154 N/mm とするために、 内導体、外導体それぞれを130 N·m、9.6 N·m のトルク で締めた。

RF 窓材は京セラ株式会社の A479B(厚み:15 mm、 内外径:50/200 mm)を用い、片面に10nm 厚程度の TiN コーティングを施している。Figure 2 の形状で *S*₁₁をシミュ レーションした結果を Fig. 3 に示す。使用した物性値 (A479B、銅、空気)は Table 4 の通りである。空洞の共振 周波数に合わせて、117.95 MHz 付近にピークが立つよ うに寸法を調整した。200 MHz 以下において-27 dB (VSWR: 1.1 相当)以下をリターンロスの要求値とする。

Figure 3: Simulation result of S_{11} for the input coupler.

入力結合器の性能を評価するため、RF 窓部の試作 機を製作した。真空引き試験を行うので両端は ICF203 フランジとした。組み立てた試作器の写真を Fig. 4 に示 す。内導体から上部に突き出している構造は内導体を固 定するための治具である。試作器の真空引き試験時は 内導体の両端に何も繋がっておらず、内導体を含む RF 窓中心部が引っ張られてメタルシールの真空封止に支 障が出る恐れがあるので固定用治具を付けた。次章で 述べる S パラメータ測定では当該治具はテーパー管との 干渉を避けるため取り外している。

Figure 4: Prototype of input coupler.

Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan July 31 - August 3, 2019, Kyoto, Japan

PASJ2019 WEPI004

4. S パラメータ測定

ネットワークアナライザ(Agilent Technologies, E5062A) を用いて試作機の S パラメータを測定した。測定のため のセットアップを Fig. 5 に示す。試作器の両端にそれぞ れテーパー管を取り付けて 120DとNコネクタを変換して いる。テーパー管は 120D-77D 変換と 77D-N コネクタ変 換を組み合わせたものになっている。テーパー管と ICF フランジの接続部において、外導体、内導体それぞれを フランジ変換アダプタ、アンカーコネクタで接続している。

Figure 5: Setup for the S-parameter measurement.

N型コネクタ付きケーブルを使用し、Hewlett Packard の校正キット 85032B を用いて 2-port 校正した。Thru 校 正は N型のオス-オス変換コネクタで両ケーブルを直結 して行った。

このセットアップで期待される S₁₁を CST MW Studio で 計算した。シミュレーションに用いた物性値は Table 4 の 通りである。モデルの断面構造図およびシミュレーション 結果をそれぞれ Fig. 6,7 に示す。実線がシミュレーショ ン結果である。

*S*₁₁の測定結果は Fig. 7 の点線となった。シミュレーションの設計ピーク 156 MHz 付近で *S*₁₁の測定値が小さな 値を取ることが確認できた。シミュレーションと測定で *S*₁₁ の大きさが異なるのは校正にテーパー管が含まれてい ないこと、および次に述べる共振があるからである。

シミュレーションに見られないピークが複数見られるの は試作機とテーパー管の距離が近過ぎて試作機とテー パー管の間で共振が発生していることが原因と考えられ

	比誘電率	誘電損失	電気伝導率 [S/m]
A479B [9]	9.9	4×10 ⁻⁵	-
テフロン	2.1	2×10-4	-
銅	-	-	5.96×10 ⁷
ステンレス	-	-	1.39×10^{6}
アルミニウム	-	-	3.56×10 ⁷
空気	1	-	-

Figure 6: Model for the S-parameter simulation.

る。たとえば263 MHzと432 MHzにあるピークは波長に 換算するとそれぞれ690 mm,1140 mmであり、Fig.5の ようにテーパー管間の距離に対応する。共振の影響を 除く対策としては試作機とテーパー管の間に直同軸管を 挿入し、試作機とテーパー管の距離を取ることが挙げら れる。

200 MHz 以下では *S*₁₁ が-36 dB 以下となっており、要求値である-27 dB 以下を十分満たしている。ピークが 117.95 MHz からずれたのは、主に試作機とテーパー管 との接続部に用いたアンカーコネクタの影響である。 Figure 3 と 7 を比較すると試作機単体では、より小さなリ ターンロスが期待できる。

Figure 7: Measurement and simulation results of S_{11} .

5. 真空引き試験

RF 窓の真空封止にはメタルシールを用いている。本 方式による真空リーク量を評価するための真空引き試験 を行った。要求されるリーク量は 1×10⁻¹⁰ Pa·m³/s 以下で ある。試作機の両端をICF 規格のフランジとしているので、 容易に真空ポンプと繋ぐことができる。

Figure 8 のようにヘリウムリークディテクタ(キャノンアネルバ、HELEN M-222LD-D)を使って、結合器片側を真

PASJ2019 WEPI004

空引きした。ヘリウムガスを吹き付けてリークチェックを 行ったところ、リークしていることがわかった。内導体、外 導体を締結しているボルトを増し締めしたが、1×10⁷ Pa·m³/s 程度までしか改善せず、要求値以下まで下がる ことはなかった。なお、ボルトには潤滑剤を塗っている。

原因としては、内導体のボルトが1本だけなのでタップ が傾いていると均等にシールされない、あるいは締める ときに内導体が回転するとシールが擦れてしまう等が考 えられる。本方式では真空封止に不安が残るため、ロウ 付け方式を検討する。

Figure 8: Setup of the helium leak test of the prototype.

6. まとめ

J-PARC MR では SX 運転時の更なるビームパワー増 強を目指して VHF システムの導入を進めている。VHF 空洞のための入力結合器の試作機を製作し、S パラメー 夕測定と真空引き試験を行った。

*S*₁₁のシミュレーション結果に現れる設計ピーク付近において実測でも小さな値を取ることが確認でき、200 MHz 以下において *S*₁₁が要求値である-27 dB 以下を満たすことが確認できた。シミュレーションにみられないピークが実測にはみられるが、これらは試作機とテーパー管が近いことによって現れた共振であると考えられる。

ヘリウムリークディテクタを用いて試作機を真空引きし、 リークチェックを行った。リーク量の要求値 1×10⁻¹⁰ Pa·m³/s に対して3桁大きいリークがみられた。真空封止 の方法としてロウ付け方式の検討を進める。

謝辞

J-PARC MR 真空グループの嶋本眞幸氏には真空引き試験に参加して頂きました。サポートに感謝致します。

参考文献

- R. Muto *et al.*, "Current Status of Slow Extraction from J-PARC Main Ring", Proceedings of IPAC2019, Melbourne, Australia, May 19-24, 2019, pp. 2311-2314.
- [2] D. Boussard et al., "The PS 200 MHz RF System Present

Situation and Future Prospects", CERN-SPS/ARF/78-6.

- [3] R. K. Reece *et al.*, "Operational Experience and Techniques for Controlled Longitudinal Phase Space Dilution in the AGS Using a High Harmonic Cavity", Proceedings of the 1989 IEEE Particle Accelerator Conference, Chicago, USA, Mar. 20-23, 1989.
- [4] M. Yamamoto *et al.*, "Simulation of Phase Modulation for Longitudinal Emittance Blow-up in J-PARC MR", JPS Conf. Proc. 8, 012015(2015).
- [5] http://blond.web.cern.ch/
- [6] Y. Morita *et al.*, "Design of Accelerating Cavity and Input Coupler for Longitudinal Emittance Blow-up in J-PARC MR", Proceedings of the 15th annual meeting of Particle Accelerator Society of Japan, Nagaoka, Japan, Aug. 7-10, 2018, pp. 790-793.
- [7] K. Hasegawa *et al.*, "Calculations of the High Frequency Cavity Used to Make a Controlled Blow-up of the Longitudinal Emittance in J-PARC MR", Proceedings of the 10th Annual Meeting of Particle Accelerator Society of Japan, Nagoya, Japan, Aug. 3-5, 2013, pp. 953-955.
- [8] http://www.nikoha.co.jp/
- [9] K. Ozeki, "Problems in Thermal Cycle Test of Cold Window for RIKEN QWR", World Wide Fundamental Power Coupler meeting #2, Geneva, Switzerland, Jul. 12-13, 2016.