#### 2019年7月31日 第16回日本加速器学会年会@京都 WEOI05

# ミューオン高周波加速のための 高時間分解能バンチ長測定

### <u>須江祐貴A</u>

飯嶋 徹<sup>A,B</sup>, 居波 賢二<sup>A</sup>, 四塚 麻衣<sup>A</sup>, 飯沼 裕美<sup>C</sup>, 中沢 雄河<sup>C</sup>, 大谷 将士<sup>D</sup>, 河村 成肇<sup>D</sup>, 下村 浩一郎<sup>D</sup>, 二ツ川 健太<sup>D</sup>, 三部 勉<sup>D</sup>, 三宅 康博<sup>D</sup>, 山崎 高幸<sup>D</sup>, 北村 遼<sup>E</sup>, 近藤 恭弘<sup>E</sup>, 森下 卓俊<sup>E</sup>, 長谷川 和男<sup>E</sup>, 石田 勝彦<sup>F</sup>, 牛沢 昂大<sup>G</sup>, 竹内 佑甫<sup>H</sup>, 齊藤 直人<sup>I</sup>, 安田 浩昌<sup>J</sup>

<u>A名大理</u>,B名大KMI,C茨大理工,D高工研,F原研,F理研,G総研大,H九大理,J-PARCセ,J東大理



- 質量は  $m_{\mu} = 207 m_e = 106 [\text{MeV}/c^2]$ 
  - 標準模型を超えた物理に高い感度を持つ
- 陽子ビームによって大量の偏極ミューオンが生成可能
- $\mu^{\pm} \rightarrow e^{\pm} \nu_e \nu_\mu$ 崩壊(寿命2.2 µs)はスピン方向に感度がある
  - 大統計量によるスピンの精密測定が可能

#### ⇒<u>ミューオンは新物理の良いプローブ</u>





## スピン歳差運動の測定手法



## スピン歳差運動の測定手法







低エミッタンスミューオンビームのためにmuon linacが必要!

## J-PARC E34 Muon Linacの開発状況



- 40 m程度の線形加速器によって212 MeVまで加速
  - •陽子加速器と電子加速器のハイブリッド
- J-PARC MUSE H-lineで 10<sup>6</sup> µ+/s のビーム強度
- 全加速器の基本デザインは完了

関連講演: THPI031 四塚 WEPH030 安田 WEPI001 中沢 WEPI041 大谷

THOH07 阿部 THOH08 飯沼 WEPH032 平山 THPH033 杉田

### J-PARC E34 Muon Linacの開発状況



- 第12回加速器学会年会 WEOM02 : リニアック専用空洞の設計
- 第13回加速器学会年会 MOOM04:ビーム力学設計を完了
- 第14回加速器学会年会 WEOL05 : ミューオンRF加速実証試験準備
- 第15回加速器学会年会 <u>FROL14</u> : プロトタイプRFQによるミューオン初RF加速
- ⇒第16回加速器学会年会 WEOI05 : バンチ幅モニターの開発と実証試験

#### 2019年7月31日

### tim

9

# 予想されるバンチ構造と測定手法の考案

#### <u>モニターへの要求</u>

- 324 MHz
- 位相分解能のおよそ1%, 30-40 ps
- 低電流ビームに対応

#### シングルミューオンを長期的に測定し 最終的に重ね合わせて算出する手法を考案

- ミューオンの検出時間と参照信号の
  時間差を高時間精度で測定
- RF周期で剰余をとる

⇒<u>シングルミューオン検出</u>と高時間分解能



### バンチ幅モニター:ミューオン検出部



Microchannel plate (MCP)を用いて1ミューオンずつの高時間分解能測定を行う

- keV-MeV シングルミューオンに対して高い感度
- 高い時間応答性

アノードの4分割化によって位置依存性による時間分解能の悪化を抑制

# バンチ幅モニター:信号処理回路とDAQ

- Constant-Fraction Discriminator
  - <u>time-walk</u>の抑制
  - ジッター(設計値): < 5 ps</li>



- TDC: CAEN V1290
  - LSB: 24.4 ps
  - •時間分解能(カタログ値):35 ps
- Flash ADC: CAEN V1720
  - サンプリング周波数 250 MHz
  - ・ダイナミックレンジ:10 μs



K. Inami [Belle-II PID Group], Nucl. Instrum. Meth. A 766, 5 (2014).

### オフラインテストによる時間分解能評価



- ピコ秒パルスレーザー使った時間分解能評価
  - ミューオン ⇒ 光電子(MCP表面での光電効果由来)
  - RF同期信号 ⇒レーザー同期信号
- <u>σ = 65 ps (2%の位相分解能) を達成</u>



### バンチ幅測定実証実験のセットアップ



- エネルギーの単一化
- 背景事象の抑制(貫通してくる µ+)

### バンチ幅測定のセットアップ



2019年7月31日

第16回日本加速器学会年会@京都 WEOI05

## バックグラウンド事象の削減



- ビーム強度が低いため背景事象が支配的
- 主要な背景事象は崩壊陽電子
- →信号事象(ミューオン)はMCPに高い信号波高
- → Time-of-Flight(TOF)と信号波高を用いて削減
  - 1. 加速Mu<sup>-</sup>の到来時間をTOFから推定
  - 2. 高信号波高のイベントのみを抽出



### 加速Mu<sup>-</sup>事象の抽出



### バンチ幅測定結果



### Next step!



### まとめ

J-PARCで Muon *g*-2/EDM の精密測定実験を準備中 →先行の実験とは異なるコンセプトで精密測定を行う

マイクロチャンネルプレートを用いたモニターを開発中 → σ=65 ps以下の時間分解能を達成した

89 keV加速Mu<sup>-</sup>を用いたバンチ幅測定の検証実験を実施 →幅 σ=0.55±0.14 nsのバンチ測定に成功

→開発中のモニターによる測定手法の有効性を検証した



実機RFQとプロトタイプIH-DTLを用いた1.3 MeVまでの加速を目指す