PASJ2019 THPI037

信号線のインピーダンス整合による CeB₆カソードの仕事関数測定装置の改良

IMPROVEMENT OF THE IN-SITE WORK FUNCTION MEASUREMENT SYSTEM FOR CeB₆ CATHODES USED IN THE ELECTRON GUN OF SACLA BY IMPEDANCE MATCHING OF THE SIGNAL LINE

馬込保^{#, A, B)}, 渡川和晃^{B)}, 稲垣隆宏^{B)}, 原徹^{B)}, 田中均^{B)}

Tamotsu Magome ^{#, A, B)}, Kazuaki Togawa^{B)}, Takahiro Inagaki^{B)}, Toru Hara^{B)}, Hitoshi Tanaka^{B)} ^{A)} Japan Synchrotron Radiation Research Institute

^{B)} RIKEN SPring-8 Center

Abstract

A CeB₆ thermionic cathode is used for the electron gun of the X-ray free-electron laser, SACLA. An operation time of a CeB₆ thermionic cathode is typically limited to only one year or so due to decrease in emission currents. Since a work function is the most dominant factor in emission current, we have been developing an in-situ measurement system for the work function of the CeB₆ thermionic cathode under simulative conditions of the real electron gun to investigate mechanism of this cathode degradation. The developed system adopts the photoelectron yield spectroscopy using excitation lights from a nanosecond tunable Nd:YAG laser system. In the measurement system, the photoelectron pulse signal was distorted in profile because of reflections of the photoelectron pulse signal in the simulative anode plate (12 cm in diameter and 2 mm in thickness) of the real electron gun and in the signal line in vacuum. A coaxial cable of 50 ohms in impedance in vacuum and an anode cylinder (5 mm in diameter and 9 mm in length) enabled the photoelectron pulse signal to be a single nanosecond pulse with a long tail. In this paper, we report the detail of the impedance matching.

1. はじめに

SPring-8 SACLA は、CeB₆製の熱カソードを電子源に 採用した X 線自由電子レーザ(X-ray free-electron laser: 以降 XFEL と略記)施設である。XFEL の安定した発振 のために電子源からのエミッションカレントは一定である 必要があるが、CeB₆カソードからのエミッションカレントは 長期間の使用で徐々に減少していくことが分かっている。

現在は、適宜 CeB₆ カソードの温度を上げることでエ ミッションカレントの減少分を補填している。しかし、1 年 経過すると減少率が著しく増加し始めるため、その時点 で新しい CeB₆ カソードとの交換を行っている。

XFEL ではレーザ発振源となる電子バンチに精細な 取り扱いが要求されるため、CeB₆カソードを交換するた びに、煩雑な調整作業を行う必要がある。また、SACLA 電子銃は二重化されておらず、SPring-8 の蓄積リングへ の常時入射も迫っていることを考えると、エミッションカレ ントの減少を防止し、長期間安定して CeB₆カソードを使 用可能にすることは、必須の事項であるといえる。

このような背景から、CeB₆カソードの劣化、すわなち、 エミッションカレントの減少の原因を in situ で調査して対 策を施し、その長寿命化に取り組むこととなった。劣化現 象は様々な要因が絡んでくると想定され、多角的な視点 からの特性評価が必要となる。我々は、その第一ステッ プとして、エミッションにおいて第一義的な CeB₆カソード の仕事関数の変化を測定することとした。

理想的には実機、あるいは実機を完全に模擬できる 電子銃テストベンチを利用して仕事関数の測定を行うべ きではあるが、その準備段階として、実機を可能な限り模 擬しつつ、小型で取り扱いやすいオフラインの測定装置 を開発してきた[1]。

当該測定装置は、実機を模擬することを前提に設計されていたため、仕事関数測定の観点からは改善すべき 問題点をいくつか有している。測定される光電子パルス のパルス形状の歪みもそのひとつである。本件では、こ の歪んだパルス形状とその対処について報告する。

2. 仕事関数測定装置

SACLA 運転中には温度約 1500℃で熱エミッションカ レントを放出している CeB₆ カソードの仕事関数を測定で きるよう、励起光にパルスレーザ光を利用した光電子収 量分光法[2]を採用している。

本測定装置はレーザ部、パルス信号処理部[3]、真空 チャンバー部からなる。装置概要を図1に示す。レーザ 出力の仕様については表1にまとめた。これ以外の装置 詳細については別途報告[1]しているのでここでは割愛 し、追加した手動レーザアッテネータについてのみ記載 する。

波長可変 YAG レーザのレーザ出射口下流に、虹彩 絞り、半波長板、および、グランレーザープリズムからな る手動レーザアッテネータを挿入している。レーザ本体 に内蔵されているアッテネータと合わせて使用することに より、パルス強度を 0.3 μJ~10 mJ とより幅広い範囲で調 整することができる。このため、光電子パルスが空間電荷 効果で飽和しない適切なパルスエネルギー領域で仕事 関数を測定することが可能となっている。

[#] magomago@spring8.or.jp

Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan July 31 - August 3, 2019, Kyoto, Japan

PASJ2019 THPI037

Figure 1: Schematic diagram of the experimental setup.

Table 1: Beam Output Characteristics of Tunable Nd:YAG-Laser System

Tunable Range	410 nm-709 nm
	(Accuracy < 0.1 nm)
Maximum Linewidth	5.5 cm ⁻¹ @450 nm
Pulse Duration (FWHM)	3.7 ns @450 nm
Maximum Pulse Energy	10 mJ @450 nm
	(Tunable 1%-100%)
Repetition Rate	10 Hz

3. 光電子パルス信号線の問題点

実機の環境を模擬するという観点から、改良前のア ノードは直径 120 mm、厚さ2 mmの円板となっている。 ただし、レーザをカソードに容易に照射できるよう、アノー ドの中央には水平方向 60 mm、垂直方向 10 mmの角穴 があけてある。アノードからの配線(真空中)は、長さ5 cm のセラミック筒 6 個で絶縁された長さ 30 cm の金属製ワイ ヤーであり、電流導入端子を介して、大気側の同軸ケー ブルに接続されている。この電流端子は大気側が MHV であり、真空側は金属ピンである。大気側の同軸ケーブ ルのインピーダンスは 50 Ω である。

このような光電子パルス信号線(アノード・電流導入端 子を含む)では各部における反射により、光電子パルス 信号が実際とは異なる複雑な形状となってしまう。励起 光の波長に対する光電子パルスの相対的なパルス強度 がわかれば仕事関数自体の測定は可能である。しかし ながら、量子効率の算出や表面状態による仕事関数の 微妙な変化を測定するためには、本質的でない複雑な パルス成分を除去して正確な光電子パルス電流波形を 計測しなければならない。そこで、信号線のインピーダン スを可能な限りマッチングさせることで光電子パルス信号 を理想的なパルス形状(数 ns 幅の単一ピークと長く伸び たテール)にするよう改良を施した。

4. 改良した光電子パルス信号線

図2に改良した光電子パルス信号線の様子を示す。

アノードは SUS316L 製で直径 5 mm、高さ9 mm の円 筒であり、底面でカソードと向かい合う。アノードの中央 部には穴が開いており、この穴にボルトを通し、アノード とアノード配線を接続・固定する。カソードからの輻射熱 に耐えるようジルコニア製のボルトを使用した。

アノードは厚さ 5 mm のアルミナ製スペーサを介して SUS316L 製サポートバーに、ジルコニア製のボルトで固 定されている。カソードに照射するレーザと干渉しないよ うサポートバーの形状はコの字型になっている。

アノード配線はカプトンを絶縁材料とするインピーダンス50Ω、長さ1mの同軸線であり、超高真空でも使用可能である。カソードからの輻射熱による影響を低減するた

PASJ2019 THPI037

めに、アノード配線はカソードに対して固定ボルトとサ ポートバーの裏側を通るように配線されている。アノード 配線のもう一端には真空中で使用可能なインピーダンス 50Ωの SHV プラグが接続されている。アノード配線は、 大気側、真空側とも SHV レセプタクルになっているイン ピーダンス 50Ωの電流導入端子を介して大気側の長さ 20 m、インピーダンス 50Ωの同軸ケーブルと接続されて いる。

Figure 2: Photograph of the improved photoelectron signal line.

3. 改良光電子パルス信号線による測定結果

図3に光電子パルス信号線の改良前後の光電子パル ス電流の様子を示す。改良前の光電子パルスには、最 初の下向きのピークとそのオーバーシュート、さらにそれ に続く振動が見られる。

一方、改良後の光電子パルスは、40 ns 程度のテール を持つ最初の下向きのピークと、それに続くいくつかの ピークが見られる。1.4×10⁻⁷ s にみられる第二の下向き ピークと最初の下向きピークの時間間隔は、大気側の電 流導入端子からフィルタボックスまでの同軸ケーブルの 長さに比例しており、フィルタボックスによる反射と考えら れる。したがって最初の下向きピークが純粋な光電子パ ルス信号であり、理想的なパルス形状になっていることが

Figure 3: Laser-induced photoelectron current from the CeB_6 cathode before and after signal-line improvement. Cathode temperature was room temperature. First peak positions are aligned to each other.

通常、光電子パルスの測定に先立ち、カソードを 1500℃で12時間以上アニーリングするが、改良した光 電子パルス信号線には28時間のアニーリング後も特に 損傷は見られなかった。

6. まとめ

SACLA 電子銃の CeB₆ カソードでは、運転時間の経 過に伴いエミッションカレントが減少するという劣化現象 が見られる。我々は、この劣化現象を解明、防止し、長 期間安定に使用できるカソードを開発するプロジェクトを 進めている。その劣化現象解明の第一段階として、オフ ラインの光電子収量分光法による仕事関数測定装置を 開発したが、依然細かい課題は多い。今回は光電子パ ルスのパルス形状を理想的な形状に近づけることができ た。残る課題も順次解決し、より精度の高い仕事関数測 定の実現をめざしていきたい。

参考文献

- [1] Tamotsu Magome *et al.*, Proceedings of the 15th Annual Meeting of Particle Accelerator Society of Japan, Nagaoka, Japan, Aug.7-10, 2018, pp. 896-899. (in Japanese).
- [2] R. H. Fowler, Physical Review 38, p.45-56 (1931).
- [3] K. Torgasin *et al.*, Phys. Rev. Accel. Beams 20, pp.073401 (2017).