PASJ2019 THPI033

MeV領域のテーブルトップ陽子源の開発

DEVELOPMENT OF TABLETOP PROTON SOURCE IN MeV REGION

依田哲彦^{#, A)}, 福田光宏^{A)}, 神田浩樹^{A)}, 嶋達志^{A)}, 高久圭二^{A)}, 武田佳次郎^{A)}, 原隆文^{A)}, 大本恭平^{A)} Tetsuhiko Yorita^{#, A)}, Mitsuhiro Fukuda^{A)}, Hiroki Kanda^{A)}, Tatsushi Shima^{A)}, Keiji Takahisa^{A)}, Keijiro Takeda^{A)}, Takafumi Hara^{A)}, Kyohei Ohmoto^{A)}

^{A)} RCNP, Osaka Univ.

Abstract

Low cost proton generator of several MeV for short lifetime RI production or for detectors calibration is expected instead of cyclotrons or electrostatic accelerators like Van de Graaff. So a proton generating system which consists of 3He ion source and deuteron (D) target has been developed at the Research Center for Nuclear Physics (RCNP), Osaka University [1]. The 3He2+ beam of 200euA has been provided by Superconducting (SC)-ECR ion source with 20 keV acceleration voltage and as a result of the experiment of 3He+D fusion reaction, the protons of about 12 MeV have been obtained in 3.6Hz through the thin aluminum window to the air, successfully.

1. はじめに

PET 診断は癌診断を中心とした臓器の代謝診断方法 として 1980 年代より大きく発展してきた。18F や 64Cu と いった陽電子放出核である短寿命の放射性同位体(RI) は通常サイクロトロンなどで得られる十数 MeV のエネル ギーの陽子ビームにより(p,n)反応を経て生成される。近 年の加速器の研究の進展によりサイクロトロンを利用した 場合の1時間当たりの RI の生産能力は、数 GBqと非常 に大きなものとなっており、また、コンパクトで自己遮蔽で きるサイクロトロンが広く普及している。一方、コンパクトに なったとはいえ、このサイクロトロンの導入コストは依然高 いものである。

ここで、PET 薬剤のための短寿命 RI を生成する新た な手段として核融合反応である 3He+D→p+4He を利用 することを考えた。この核融合反応の結果放出される 14.67MeV の陽子を利用すると RI 生産能力はサイクロト ロンに及ばずとも、導入コストの低減と装置の小型化によ り研究室レベルで気軽に使用できる RI 製造装置の実現 が期待される。14.67MeV というエネルギーは 18F や 64Cu といった陽電子放出核を生成するのに十分なエネ ルギーである。この核融合反応自体は古くから知られて いるもので[2]、恐らくは過去にもこの反応を使ったビーム 生成装置の検討がなされたであろうが、反応率の低さが 足枷であったであろうことは想像に難くないが、近年、イ オン源のビーム強度そう今日技術が発展していることを 受けて、PET 関連の研究に耐えうる量の RI 製造を 3He+D→p+4He 反応により行う装置の実現を今一度目 指す。[3]

今回、重水素標的、そして生成した陽子を資料に照 射させる窓構造などについての開発を行った。0.3mmの アルミ窓を製作し、そこをとおして大気側に陽子を取り出 せるかが開発の中心である。大気側に陽子を取り出せれ ば RI 生成だけでなく、検出器の校正や教育用原子核反 応実験などへの応用も広がることが期待できる。

2. 3He+D 反応による陽子生成について

PET 薬剤生成のための陽子線を核融合反応である 3He+D→P+4He 反応を利用する。この反応の断面積の 3He のエネルギー依存性は既によく知られており[2]数百 keV で反応率が最大となる。このエネルギー領域のイオ ンビームは静電印加されたイオン源によって供給可能で あり、大強度のイオン源を中心とする装置の構築により テーブルトップサイズのPET薬剤生成装置の実現が期 待される。また、この反応は中性子の生成を伴わないの で遮蔽が簡便な設置コストも低減可能な陽子源の実現と いう側面もある。ただし、生成した陽子と他の物質との (p,n)反応に伴う中性子は考慮する必要がある。

3. 3He+D 反応の予備実験

3He+D→P+4He 反応による陽子が利用可能かどうか の予備的な実験を行った[1]。この実験は当初は粒子検 出器の校正のための陽子源の開発の一環として実施さ れた。ここではD標的として deuterated polyethylene を使 用した。3He+D→P+4He 反応の結果放出される陽子は プラスチックシンチレーターと光電子増倍管により検出し た。Deuterated polyethylene を 3He2+ で15 分間照射 した結果 499 個の陽子が検出された。

4. PET用RI製造装置の開発状況

上記のとおり低強度ながらも 3He+D→p+4He の結果 放出される陽子を検出できることを確認し、少なくとも粒 子検出器の校正などには有用であることが確認されたこ とを受けて、次にその強度を桁違いに増強するための開 発を行って、PET 薬剤のための短寿命 RI を生成する装 置実現を目指すわけであるが、そのためには「He イオン 源の大強度ビーム開発」と「D 標的及び生成陽子取出し の構造の最適化」が開発の2 つの大きな柱となる。

このうち「D標的及び生成陽子取出しの構造の最適化」 に関して、大強度の3Heビームによる高い熱負荷の下で D標的をいかに実現するかということと、標的と試料の間 の真空の仕切りを熱負荷に耐えうる範囲でいかに薄くす

[#] yorita@rcnp.osaka-u.ac.jp

PASJ2019 THPI033

Figure 1: 実験セットアップ。イオン源のビームライン上に Al 窓を設置した。

るということが肝である。今回 ø 20mm で厚さが 0.3mm の アルミ窓を有する冷却水路付きのアルミフランジを製作し、 アルミ窓をとおして陽子を取り出せるかを中心に実験を 行った。

4.1 18GHz 超伝導(SC)-ECR イオン源

実験では18GHz SC-ECR を照射用の3He イオンビー ム源として使用した。SC-ECR は RCNP では2005 に導 入されて以降様々な大強度で多価の重イオンビームの 供給に利用されてきた[4-6]。SC-ECR は重イオン生成の ために設計され磁場強度などは3He2+に対してはオー バースペックであるが、SC-ECR 直下のビーム輸送ライン 上にあるファラデーカップやスリットを有するビーム診断 用チェンバーが実験用の検出器などをインストールする のに十分な大きさを有していること、また、年間の重イオ ンのマシンタイムの割合が小さいため比較的自由に使え

Figure 2: 実験結果。チャンネル数にして 3600Ch のあた りのピークが Al 窓を通過して出てきた陽子の最大エネ ルギー約 12MeV に相当する。

るイオン源であることなどが、今回使われた理由である。 今回、定常的には~400euAの3He2+が得られた。この実 験での加速電圧は20kVであり3He2+のエネルギーは 40keVである。

4.2 実験セットアップ

実験のセットアップの様子をFig.1に示す。アルミ窓付 フランジはイオン源のビーム軸上に窓部分が乗るように 設置された。アルミ窓の真空側に薄膜状の deuterated polyethylene をカプトンテープで張り付けた。deuterated polyethelene の薄膜は、チップ状の試料を高圧プレス機 にかけて制作した。窓部の大気側には生成した陽子検 出器としてプラスチック・シンチレータを設置した。使用し たシンチレータのサイズはビーム軸方向に 14mm、ビ無 軸に垂直な方向は 14mm x10mm である。プラスチック・ シンチレータからの光は光電子増倍管により信号として 読みだされる。シンチレーターと光電子増倍管はアクリ ルのライトガイドを介して接続されている。

4.3 実験結果

3He+D→P+4He 反応の結果放出される陽子の測定 結果を Fig. 2 に示す。赤丸は He ビームを照射した状態 でのデータ、青丸は He ビームを停止した状態でのデー タである。Deuterated polyethylene 標的に~400ueA の 3He2+を 10 分間照射した結果、大気側において 2204 個の陽子が検出された。ここでグラフ中の 500Ch 以上の イベント数を陽子イベントとしている。3600Ch に見える ピークは 0.3mm のアルミを通過した陽子の最大エネル ギー約 12MeV に相当する。また、エネルギーの低いイ ベントは Al 窓を斜めに通過して大きくエネルギーを失っ た陽子、及びシンチレーターかすめて通過した陽子によ るイベントと考えられる。

Figure 3: Deuterated polyethylene のビーム照射前後の 様子。上が照射前、下が照射後である。

PASJ2019 THPI033

また、Deuterated polyethylene 標的を照射後取り出し てみたところ熱変形しているのが見られた。Figure 3 に ビーム照射前後の標的の様子を示す。あまり熱負荷の 高くない状態でも標的の変形が起こるということがわかっ たので、フランジとの熱接触方式について今後検討する ことが非常に重要である。また、標的構造についての別 の方法である、Ti 蒸着膜に D ビームを照射して D 標的 とする方式についても検討していく。

5. まとめ

今回3He+D→p+4Heによる陽子生成装置の実現に向けた開発として、主に大気への陽子取り出しを実現する0.3mm厚のAl窓の開発を中心に実験を行った、その結果エネルギーロスの少ない陽子を約3.6Hzで取り出すことに成功した。今後、さらなる標的構造の検討や、3Heイオン源の大強度化により、生成陽子ビームの大強度化を目指す。

謝辞

本発表は科研費の補助のもと実施された研究の成果である。

参考文献

- [1] T. Yorita *et al.*, T8_We_71, Proc. of International Conference of Ion Sources 2017.
- [2] M. Nocente et al., Nucl. Fusion 50 (2010) 055001.
- [3] T. Yorita et al., Proceedings of PASJ2018, WEP126.
- [4] T. Yorita et al., Rev. Sci. Instrum. 79, 02A311 (2008).
- [5] T. Yorita et al., Rev. Sci. Instrum. 81, 02A332 (2010).
- [6] T. Yorita et al., Rev. Sci. Instrum. 83, 02A335 (2012).