PASJ2019 THPH032

加速器用高温超伝導マグネットの開発

—SuperKEKB 衝突点領域用六極マグネットの設計と試作— DEVELOPMENT OF HIGH TEMPERATURE SUPERCONDUCTING ACCELERATOR MAGNET

- DESIGN AND TRIAL PRODUCTION OF SEXTUPOLE MAGNET FOR SUPERKEKB INTERACTION REGION -

王旭東^{#, A)}, 土屋清澄^{A)}, 寺島昭男^{A)}, 有本靖^{A)}, 植木竜一^{A)}, 川井正徳^{A)}, 宗占国^{A)}, 大内徳人^{A)}, 増澤美佳^{A)}, 多和田正文^{A)}, 菊池章弘^{B)}, 藤田真司^{C)}

Xudong Wang^{#, A)}, Kiyosumi Tsuchiya^{A)}, Akio Terashima^{A)}, Yasushi Arimoto^{A)}, Ryuichi Ueki^{A)}, Masanori Kawai^{A)}, Zhanguo Zong^{A)}, Norihito Ohuchi^{A)}, Mika Masuzawa^{A)}, Masafumi Tawada^{A)}, Akihiro Kikuchi^{B)}, Shinji Fujita^{C)}

^{A)} High Energy Accelerator Research Organization

^{B)} National Institute for Materials Science

^{C)} Fujikura Ltd.

Abstract

A high-temperature superconducting (HTS) sextupole magnet was proposed for the chromaticity correction of the SuperKEKB interaction region. The magnetic field strength of the magnet was designed to be 200 T/m^2 at 30 K. The magnet consists of six rectangular coils wound with a REBCO conductor. Each coil has an inner radius of 75 mm and a length of 200 mm. In this paper, we present the design, fabrication, and excitation test result at 77 K and 4.2 K of the HTS sextupole magnet. As a result, we successfully excited the magnet to the design current of 250 A at 4.2 K. We also confirmed that the magnet had been fabricated with no degradation of the conductor properties.

1. はじめに

SuperKEKB において、高ルミノシテイーを達成するた めには衝突ビームのキメ細かな色収差補正が必要で、 ノーマルとスキューの六極磁場を同時に発生する六極マ グネットが必要となる。必要磁場条件と磁石サイズなどの 観点から、常伝導磁石よりも超伝導磁石がこの六極マグ ネットにふさわしいと考えられる。この六極マグネットは ビーム衝突点から 30-100 m の領域に分散して 16 台設 置される小型マグネットであるため、超伝導磁石を冷却 するための大型ヘリウム冷凍機から冷媒を分配する方式 は効率的ではなく、小型冷凍機冷却が望ましい。また、 積分ルミノシテイーの低下を防ぐために、クエンチしにく いことや素早くクエンチ復帰が可能であることが望ましい。 これらの課題を解決しうる候補として、小型冷凍機冷却 の高温超伝導磁石が挙げられる。加速器用高温超伝導 磁石の開発は世界各国の研究機関で盛んに進められて いる。特に CERN を中心とした LHC の次期計画におい ては、20 T 高温超伝導マグネットを候補とする 100 TeV 級の超大型加速器(FCC)の検討が進められている[1]。 そこで、我々は将来の加速器用高温超伝導磁石の実現 に向けて、SuperKEKB 衝突点領域用六極マグネットを ターゲットとして、高温超伝導線材である REBCO 線材を 用いたコイル試作とその特性評価を行ってきた[2-11]。ま た REBCO 線材の 4.2 K 高磁場下における臨界電流と 接続抵抗の基礎特性評価も行ってきた[12-16]。

本報告は、REBCO線材を用いた実機サイズの SuperKEKB衝突点領域用高温超伝導六極マグネットの 設計と試作、液体窒素(77 K)と液体へリウム(4.2 K)によ る浸漬冷却下の励磁試験について報告する。

2. HTS 六極マグネットの設計

HTS 六極マグネットの概略図と諸元をそれぞれ Fig.1 と Table 1 に示す。コイル設計は矩形レーストラック形状 として、磁場勾配及び製作性を考慮して 2 層のコイル構 造とした。コイル外側に鉄ヨークを配置し、外部への漏れ 磁場を小さくした。ノーマル六極磁場勾配を約 200 T/m² となるように運転電流を 250 A とした。また、多極磁場成 分を 10⁻⁴ オーダー以下となるように、数値計算ソフト Opera[17]を用いて、コイル形状と鉄ヨークの配置を求め た。

Figure 1: Schematic drawing and quadrant cross section of the HTS sextupole magnet.

[#] wanxdon@post.kek.jp

PASJ2019 THPH032

Table 1: Main	Parameters	of the HTS	Sextupole	Magnet

Parameter	Value
Coil inner bore radius	75 mm
Normal sextupole field gradient	211.7 T/m ²
Coil length	200 mm
Yoke radius (inner, outer)	150.5, 195 mm
Yoke length	200 mm
Sextupole coil	
Coil width (inner, outer)	38.6, 83.6 mm
Coil height	8.8 mm
Number of turns	121 x 2 turns
Conductor length for one coil	~110 m
Design current	250 A
Integrated multipole: b9	-0.08 units
Max B $/\!\!/$ field on the conductor	2.37 T
Max $B \perp$ field on the conductor	1.38 T
Stored energy	2.32 kJ

コイル巻線の設計は、フジクラ社の IBAD-PLD 法によ り作製された REBCO 線材 (FYSC-SCH04)を用いて行っ た[18]。線材断面構造は、75 µm の Hastelloy®基板の上 に中間層と約 2 µm の超伝導層があり、外側全体に約 2 µm の銀層がスパッタ処理されており、さらに外側に約 20 µm の銅層がメッキ処理されている。絶縁処理を施す 前の線材サイズは幅 4.1 mm、厚み 0.13 mm である。絶 縁処理は 12.5 µm のポリイミドテープを 2 層とした。 REBCO 線材の臨界電流は、77 K 自己磁場下で約 253 A (1 µV/cm 基準)である。77 K の測定値から推定した REBCO 線材の臨界電流の磁場と温度依存性と、HTS 六極マグネットのロードライン (B//cとB⊥は垂直磁場下、 B//abとB//は水平磁場下)をFig.2 に示す。運転温度 30 K の設計に対して、垂直磁場下の臨界電流とロードラインの比率から負荷率は 0.56 となる。

Figure 2: Measured (77 K) and estimated critical currents of the REBCO conductor, and load line of the HTS sextupole magnet.

3. HTS 六極マグネットの試作

試作した 6 個の矩形レーストラック形状 HTS コイル (#1-#6)の外観写真を Fig. 3 に示す。真鍮の巻き芯を用 いて2層に巻線し、形成して後に真空加圧含浸を行った。 コイルの各層の寸法を Fig. 4 に示す。寸法仕様に対して ±0.1 mm(望ましくは±0.05 mm)を目標として試作した が、結果として1 mm 程度の誤差が生じた。REBCO線材 の厚みのばらつきが最も大きく影響していると考えられる。 今後は、寸法精度の改善のために、線材厚みのばらつ きを吸収できるように巻線加工の改良が必要である。 77 K 自己磁場下におけるコイルの電圧電流特性を Fig. 5 に示す。コイルの超伝導特性は良好であり、臨界 電流が 75-88 A (0.1 μ V/cm 基準)、n 値が 29-31 (0.001-0.1 μ V/cm 領域)である。

Figure 3: Photographs of the six HTS coils.

Figure 5: V vs. I curve of the six HTS coils at 77 K.

Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan July 31 - August 3, 2019, Kyoto, Japan

PASJ2019 THPH032

組立てた HTS 六極マグネットの写真とコイル間の接続 の概略図をそれぞれ Fig.6と Fig.7示す。6個の HTS コ イルをアルミ製部材に取付け、口出し電極およびコイル 間接続部材を半田で接続した。コイル間接続部材は、銅 板 (Cu)に REBCO 線材 (SC)を半田付けして、電気抵抗 を低減して発熱を抑える構造とした。6個のコイルは直列 に接続される。コイル間接続部材により、電流ループが 生じるため、これによる磁場を打ち消すように、コイル#6 からコイル#1 に向かってループ電極を取付けた。ループ 電極もコイル間接続部材と同様に、銅板 (Cu)に REBCO 線材 (SC)を半田付けして、電気抵抗を低減して発熱を 抑える構造とした。コイルとアルミ部材間の絶縁としてア ルミ部材にポリイミドを蒸着し、隣り合うコイルの直線部 (長軸)の間にはコイル直線部の電磁力サポート部材を 設置した。

Figure 6: Photograph of the HTS sextupole magnet.

Figure 7: Schematic drawing of inter-coil joints.

4. HTS 六極マグネットの励磁試験

HTS 六極マグネットをフジクラ社で製作した後に、77K において鉄ヨークがない状態で最初の励磁試験(75 A) を行った。その後に KEK まで輸送して、鉄ヨークを組み 込んだ状態で 77 K と 4.2 K で励磁試験を行った。KEK での HTS 六極マグネットの組立て写真と励磁試験の外 観写真を Fig. 8 に示す。 励磁試験の回路図を Fig. 9 に 示す。HTS 六極マグネットは、縦型のクライオスタット内 に吊り下げて、その外側に鉄ヨークを配置した。励磁試 験は、77 K で 77 A(掃引速度は 1 A/s)まで通電し、4.2 KでHTS 六極マグネットの運転電流 250 A(掃引速度は 200 A 以下が 1 A/s で、200 A 以上が 0.4 A/s)まで通電 して行った。保護抵抗は、クエンチ時の温度上昇が 300 K 以内となるように、かつ 4.2 K で 250 A 通電時に磁石 両端電圧が 200 V 以内となるように 0.75 Ωとした。 クエン チ検出システムは、6個のHTSコイルを2分割した三極 分のコイル同士の電圧差分(Vvalance)が検出電圧 40 mV (Vop)を超えて、検出時間 10 ms(top)以上継続したとき に遮断回路へトリガ発信するように設定した。

Figure 8: Photographs of the HTS sextupole magnet and measurement setup.

Figure 9: Dump circuit and quench protection system.

77 Kと4.2 K で測定した HTS 六極マグネットの各コイ ルの電圧電流特性を Fig. 10 に示す。4.2 K の結果は、 設計電流まで健全に HTS 六極マグネットを励磁できるか を確認するためで、臨界電流まで測定していない。77 K におけるフジクラ社と KEK で測定した各コイルの臨界電 流(0.1 µV/cm 基準)を Table 2 に、各コイル間の接続抵 抗を Table 3 に示す。フジクラと KEK で測定した各コイ ルの臨界電流とコイル間の接続抵抗は同程度であり、輸 送によるコイル劣化がないことを確認した。4.2 K の励磁 試験において、常伝導電圧の発生がなく設計電流 250 A まで通電でき、トレーニングも観測されなかった。 励磁 時のコイル電圧(Fig. 11)から換算したインダクタンスは、 設計値 74 mH に対して約 70 mH であった。77 K の励 磁試験後に、60 A 通電状態で遮断試験を行い、クエン チ検出システムの動作確認と再励磁後の磁石の健全性 確認を行った。遮断時の電流、磁石両端電圧、トリガ信 号を Fig. 12 に示す。 遮断時の磁石両端電圧は約-45 V で、電流減衰時定数は約 90 ms であり、ともに設計値通 りである。遮断試験後に再励磁を行い、電圧信号に異常 がなく磁石の健全性を確認した。

PASJ2019 THPH032

Figure 10: V vs. I curve of the HTS sextupole magnet at (a) 77 K and (b) 4.2 K.

Table 2: Critical Currents of the HTS Sextupole Magnet at 77 K

Unit (A)	#1	#2	#3	#4	#5	#6	
Fujikura	73	>75	>75	>75	>75	>75	
KEK	73	>77	>77	76	76	>77	

Table 3: Joint Resistances of the HTS Sextupole Magnet at 77 K

Unit ($\mu\Omega$)	#1-#2	#2-#3	#3-#4	#4-#5	#5-#6
Fujikura	1.3	1.4	1.8	1.1	1.6
KEK	1.5	1.5	1.6	1.2	1.6

Figure 11: Inductive voltage of the HTS sextupole magnet at 77 K and 4.2 K.

Figure 12: Dump test result of the HTS sextupole magnet at 77 K.

5. まとめ

REBCO線材を用いた実機サイズのSuperKEKB衝突 点領域用高温超伝導六極マグネットの設計と試作を行 い、液体窒素(77 K)と液体へリウム(4.2 K)による浸漬冷 却下での励磁試験を行った。試作した6個の矩形レース トラック形状 HTS コイルの超伝導特性は良好であり、 HTS 六極マグネットに組み立てた後の試験結果からもコ イル部と接続部に劣化が無く、4.2 K では設計電流 250 A まで異常電圧の発生がなく通電できた。また、別報の 磁場測定においても、六極磁場の設計値と同様の結果 が得られた。今後は、スキュー六極コイルの試作を行い、 今回試作したノーマル六極コイルと組み合わせることで より実機に近い HTS 六極マグネットの製作、励磁試験、 磁場測定を行う予定である。また、今回達成できなかっ たコイル寸法精度の向上のために、巻線加工技術の開 発も平行して行っていく。

謝辞

本研究は科学研究費補助金(15H03667)と (19H01911)の助成により実施したものである。 Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan July 31 - August 3, 2019, Kyoto, Japan

PASJ2019 THPH032

参考文献

- [1] https://home.cern/science/accelerators/future-circularcollider
- [2] M. Daibo *et al.*, "Study of quench behavior of REBCO impregnated pancake coil with a 75-µm-thick copper stabilizer under conduction-cooled conditions", Physics Procedia, Vol. 67 (2015) pp. 750-755.
- [3] K. Tsuchiya et al., "加速器用 HTS マグネットの開発(1) SuperKEKB 衝突点色収差補正用 HTS 六極マグネットの 設計一", Abstracts of CSJ Conference, Vol. 92 (2015) p.194.
- [4] S. Fujita et al., "加速器用 HTS マグネットの開発(2)— REBCO 含浸コイルのクエンチ特性の測定—", Abstracts of CSJ Conference, Vol. 92 (2015) p.195.
- [5] X. Wang et al., "加速器用 HTS マグネットの開発(3)-REBCO 含浸コイルのクエンチ特性の数値解析-", Abstracts of CSJ Conference, Vol. 92 (2015) p.196.
- [6] K. Tsuchiya, et al., "Development of HTS Sextupole Magnet for SuperKEKB Interaction Region", IEEE transactions on applied superconductivity, Vol. 26 (2016) 4100904
- [7] X. Wang, et al., "Experiment and Numerical Simulation on Quench Characteristics of ReBCO-Impregnated Coil", IEEE transactions on applied superconductivity, Vol. 27 (2017) 4700105
- [8] S. Fujita et al., "加速器用 HTS マグネットの開発(5) SuperKEKB 衝突点用六極マグネットのコイル試作-", Abstracts of CSJ Conference, Vol. 95 (2017) p.19.
- [9] K. Tsuchiya *et al.*, "加速器用 HTS マグネットの開発(6-1) -全体概要-", Abstracts of CSJ Conference, Vol. 96 (2018) p.48.
- [10] S. Fujita et al., "加速器用 HTS マグネットの開発(6-2)-SuperKEKB用 REBCO 六極マグネットの試作-", Abstracts of CSJ Conference, Vol. 96 (2018) p.49.
- [11]K. Tsuchiya, et al., "Prototype HTS Sextupole Magnet for SuperKEKB Interaction Region", IEEE transactions on applied superconductivity, Vol. 29 (2019) 4002604
- [12] K. Tsuchiya et al., "加速器用 HTS マグネットの開発(4) -REBCO 導体の 4.2 K における臨界電流の測定-", Abstracts of CSJ Conference, Vol. 92 (2015) p.197.
- [13] K. Tsuchiya et al., "4.2 K 平行磁場下における REBCO 線 材の臨界電流測定", Abstracts of CSJ Conference, Vol. 95 (2017) p.10.
- [14]K. Tsuchiya *et al.*, "Critical current measurement of commercial REBCO conductors at 4.2 K", Cryogenics, Vol. 85 (2017);
 - https://doi.org/10.1016/j.cryogenics.2017.05.002
- [15] X. Wang et al., "加速器用 HTS マグネットの開発(6-3) 77 Kと4.2 K 高磁場下における REBCO 線材の接続抵抗 特性-", Abstracts of CSJ Conference, Vol. 96 (2018) p.50.
- [16] X. Wang et al., "Splice Resistance Measurements of REBCO Tapes for a REBCO Sextupole Magnet", IEEE transactions on applied superconductivity, Vol. 29 (2019) 8800905
- [17] http://operafea.com
- [18] Y. Iijima *et al.*, "Development for mass production of homogeneous RE123 coated conductors by hot-wall PLD process on IBAD template technique", IEEE transactions on applied superconductivity, Vol. 25 (2015) 6604104.