アンジュレータ位相誤差の普遍的表式と系統的不整磁場への適用

田中隆次 理研放射光センター

アンジュレータ位相誤差とは?

位相誤差:アンジュレータ磁場調整の基準

$$\phi_j = \frac{2\pi/\lambda_u}{1 + K^2/2} \int_0^{z_j} \left[\gamma^2 \beta_{\perp}^2(z) - \frac{K^2}{2} \right] dz$$

磁場分布 B(z) を用いて磁極位置 z_i において計算

$$\hat{I} \equiv \frac{I_r}{I_0} = \exp(-k^2 \sigma_{\phi}^2)$$

高次光の劣化を精度良く評価可能[1]

[1] R. Walker, Nucl. Instrum. Methods A 335, 328 (1993)

位相誤差による性能評価

位相誤差とアンジュレータ仕様策定

"超高性能"を目指すには?

一般的な磁場調整作業 (ソーティング、シミング)

 $\sigma_{\phi}^2 \sim \sigma_{noise}^2 + \sigma_{sys}^2$

実用条件における位相誤差の緩和

- ・ 位相誤差に関する報告: <u>実用的条件では</u> 位相誤差条件は大幅に緩和される^[2,3]
 - 基本式 $\hat{I} = \exp(-k^2 \sigma_{\phi}^2)$ は、高次光強度の劣化 を過大評価
- 実用的条件=光強度@試料
 - 電子ビーム:エミッタンス、分散関数、 ベータトロン関数、エネルギー拡がり
 - ビームライン:角度アクセプタンス

全てが位相誤差の影響を緩和する

[2] S. Casalbuoni, Proceedings of IPAC2012, 711 (2012)[3] R. P. Walker, Phys. Rev. ST Accel. Beams 16, 010704 (2013)

位相誤差緩和の例

有限エネルギー広がり

有限エミッタンス・角度アクセプタンス

[4] T. Tanaka, Phys. Rev. Accel. Beams 21, 110704 (2018)

一般化位相誤差

ー般化位相誤差・定義

$$\Sigma_{\phi}^2 = \sigma_{\phi}^2 - \sigma_{\langle \phi \rangle}^2$$

 ϕ :従来の位相誤差(基本位相誤差)
 $\langle \phi \rangle$: ϕ の単純移動平均(平均幅N/R)

$$\begin{split} R\left(\frac{\sigma_{\gamma}}{\gamma}, \sigma_{x'}, \sigma_{y'}, \Delta\theta_{x}, \Delta\theta_{y}\right) = \\ \sqrt{1 + 8\pi \left(kN\frac{\sigma_{\gamma}}{\gamma}\right)^{2} + \frac{k^{2}}{4\sigma_{r'}^{4}} \left[\sigma_{x'}^{2} + \left(\frac{\Delta\theta_{x}}{\pi}\right)^{2}\right] \left[\sigma_{y'}^{2} + \left(\frac{\Delta\theta_{y}}{\pi}\right)^{2}\right]} \end{split}$$

緩和因子の例 (N=200,k=15,4_s)

一般化位相誤差計算の実際

22

一般化位相誤差計算の実際

一般化位相誤差計算の実際

一般化位相誤差による高次強度の推定

一般化位相誤差の妥当性

	σ _γ /γ (%)	ε _x (m.rad)	$\Delta \theta / \sigma_{p}$
(a)	0	0	0
(b)	0.1	0	0
(C)	0.1	10-10	0
(d)	0.1	10-10	4
(e)	0.1	10-9	0
(f)	0.1	10-9	4

アンジュレータ不整磁場 モデルを乱数で600個生 成し、厳密計算とΣ_φによ る簡易評価とを比較

系統的不整磁場による影響評価

系統不整磁場による位相誤差の緩和

系統的不整磁場(1~3次)における位相誤差の緩和(解析式)

34

再考:アンジュレータ仕様策定

一般的な磁場調整作業 (ソーティング、シミング)

 $\sigma_{\phi}^2 \sim \sigma_{noise}^2 + \sigma_{sys}^2$

ご清聴ありがとうございました

$$\phi_j = \omega_1[\tau_r(z_j) - \tau_0(z_j)]$$
 発光点(磁極)で形成される 光パルスの位相のばらつき

$$\tau(z) = \frac{1}{2\gamma^2 c} \int [1 + \gamma^2 \beta_{\perp}^2(z)] dz \quad \frac{$$
遅延時間}{(観測者時間)}

$$= \frac{2\pi}{\lambda_u} \frac{1}{1 + K^2/2} \int_0^{z_j} \left[\gamma^2 \beta_{\perp}^2(z) - \frac{K^2}{2} \right] dz$$

磁場分布 $B_{x,y}(z)$ が与えられれば容易に計算可能

位相誤差の標準偏差(
$$\sigma_{\phi}$$
)を用いて $\hat{I} \equiv \frac{I_r}{I_0} = \exp(-k^2 \sigma_{\phi}^2)$ 高次光の劣化を精度良く評価可能^[1]

[1] R. Walker, Nucl. Instrum. Methods A 335, 328 (1993)

系統的不整磁場による位相誤差

"系統的"=不整磁場ΔB(z)が滑らかに変化

$$\phi_{j} = \frac{2\pi}{\lambda_{u}} \frac{1}{1 + K^{2}/2} \int_{0}^{z_{j}} \left[\gamma^{2} \beta_{\perp}^{2}(z) - \frac{K^{2}}{2} \right] dz$$
$$= \frac{2\pi}{\lambda_{u}} \frac{K^{2}}{1 + K^{2}/2} \int_{0}^{z_{j}} \frac{\Delta B(z)}{B_{0}} dz$$

基本位相誤差∝不整磁場の積算

 $\Delta B(z)/B_0$ が小さい場合でも、系統的不整磁場による基本位相誤差 σ_0 は増大

緩和因子の例 (N=200,k=15,1₅)

