PASJ2019 FRPH013

KEK-PF 高度化に向けたデジタル LLRF システムの調査 INVESTIGATION OF THE DIGITAL LLRF SYSTEM FOR THE KEK-PF UPGRADE

内藤大地 *A)、坂中章悟 A)、高橋毅 A)、山本尚人 A)

Daichi Naitoi*^{A)}, Shogo Sakanaka^{A)}, Takeshi Takahashi^{A)}, Naoto Yamamoto^{A)}

^{A)}High energy accelerator research organization

Abstract

The KEK-PF is searching for plans to improve its performance. As one of the plans, we investigate to replace the analog and decrepit low level RF (LLRF) system by a digital low level RF (DLLRF) system. The DLLRF is expected to improve the stability of cavity RF, and then prevent the synchrotron oscillation. For the input of the cavity control, I/Q detection method is employed in the DLLRF, and its accuracy affects the performance of the RF control. In this paper, we review the I/Q detection method used in other light source to develop the DLLRF.

1. はじめに

KEK Photon Factory では放射光リングの高度化/高 性能化を検討している [1,2]。RF グループでは RF ローレベル系のアップグレードを以下3点の理由か ら検討している。1 点目は RF ローレベル系の老朽化 対策で、新規のシステムに置き換えることで今後10 年以上の安定した運用を目指す。2 点目は RF 出力 位相及び振幅の安定化の向上である。現在のシステ ムでは~1%の振幅変動が観測されており[3]、PFが 高度化された際にはこの変動で励起されるシンクロ トロン振動が問題となりうる [4]。そこで RF ローレ ベル系をデジタル化する事で位相/振幅補償を高度化 し、ビーム安定性の改善を目指す。3点目は次世代 光源で使われる技術の実証である。より高度なイン スタビリティの抑制や過渡的なビームローディング の補償等を行えるシステムの実現を目指す。本発表 では現状のシステムの改善点と、デジタル化の前段 階として他光源施設で用いられているシステムの調 査結果についてまとめる。

2. 現行のローレベル RF 系とその改善点

PF リングには 4 つの加速空洞が置かれ、それぞれ個別のクライストロンで RF パワーを供給している。RF パワーはクライストロンから加速空洞まで矩形導波管により伝送され、中間には空洞からの反射パワーを吸収するためのサーキュレーターが設置されている。Table 1 に基本的なパラメーターを示す。また、クライストロンと加速空洞を制御するためのローレベル RF システム (LLRF)[5]の写真を Fig. 1 に示す。LLRF システムはアナログのモジュール群で構成されている。このモジュール群は老朽化が進んでおり、交換品の入手が困難なものもある。よってこれらをデジタル回路に置き換えることが望ましい。

次に RF システムの概略図を Fig. 2 に示す。 500.1 MHz の RF 信号は 250 MHz のマスターオシ レーターと周波数ダブラーによって生成される。RF Table 1: Parameters of RF Cavity and Klystron

Number of cavities	4	
Radio frequency	500.1 MHz	
Harmonic number	312	
Cavity voltage per cavity	0.425 MV	
Beam current	450 mA	
Klystron power per cavity	72 kW	

Figure 1: Photo of the LLRF system.

信号は4つのステーションに分配され、各クライス トロンの入力 RF 信号として用いられる。入力 RF 信 号の RF 電力と位相はサーキュレーター下流の方向 性結合器でピックアップした RF 信号を用いて制御 される。

RF 電力は Fig. 2 の Automatic Gain Control (AGC) AMP と AGC コントローラで制御する。AGC コント ローラ内部でコンパレータによりモニター値と指令 値を比較して AGC AMP への供給電圧を制御する。 またビーム負荷によって変化する空洞内の RF 電圧 を補償するため、電力の変化を予測して補正を行っ ている。クライストロンの出力電力 P_g は空洞電力 P_c 、ビーム負荷により空洞から持ち去られる電力 P_b を用いて

$$P_g = \frac{P_c}{4\beta} \cdot \left(\beta + \frac{P_b + P_c}{P_c}\right)^2 \tag{1}$$

^{*} daichi.naito@kek.jp

PASJ2019 FRPH013

Figure 2: Schematic of the RF system.

と計算して AGC コントローラへの入力補正値とする [6]。ここで β は空洞の coupling coefficient である。 また P_cを指令値として与え、P_b はビーム電流と各 アンジュレータのギャップ幅のモニター値から計算 する。この方式はシステムが単純でローレベル系の 異常を診断しやすい。しかし、AMP ゲイン応答の非 線形性が大きい、フィードバックの応答速度が遅い という問題がある。

クライストロンの出力位相は入力 RF 信号に対し てロックする。Dual converter と PLL コントローラー の概略を Fig. 3 に示す。基準 RF 信号は Fig. 3 中の Input A に、クライストロン出力のピックアップ信号 は Input B に入力される。それぞれの信号は 500 kHz にダウンコンバートされたのち、PLL コントロー ラーに送られる。送られた信号はゼロクロス検出器 とフリップフロップを用いて位相差に応じた幅の矩 形波に変換される。生成された信号はローパスフィ ルターで平滑化された後、ループアンプから出力さ れる。このシステムでは矩形波を平滑化させる際に ホワイトノイズがのり、ビームに対して微弱なシン クロトロン振動を常に誘起してしまっている。

Figure 3: Schematic of the dual converter and PLL controller.

加速空洞の共振周波数のずれ、位相変化はチュー ナーフェーズロックループによって行う。ここでは 空洞についているピックアップアンテナからの RF 信号とクライストロンからの RF 出力の位相差が常 に一定になるように、空洞につけられたチューニン グプランジャーを駆動する。

これまで見てきたように現在の RF システムでは、 空洞電力補償ループと位相補償の出力部に問題を抱 えている。この他に制御電源の電圧リップルにより クライストロン出力に数百 Hz のリップルが生じて おり、PF を高度化した際には問題となりうる。この リップルは既存の電力補償システムでは応答速度が 遅くて対応できていないため、新規システムではよ り高速な電力補償システムが必要である。

3. デジタル LLRF システムの導入

前述の老朽化問題とフィードバック系の問題点を 解決するために LLRF のデジタル化の検討を開始し た。この章ではデジタル LLRF (DLLRF)の構成要素 のうち、アナログ信号検出部が他の光源加速器でど のような方式になっているかを俯瞰する。

3.1 デジタル LLRF での空洞制御

DLLRF は多数の第三世代の光源加速器ですでに 導入されている技術で、近年では Field-Programmable Gate Array (FPGA) を核としたデジタル回路で構成さ れるのが一般的である。Figure 4 に DLLRF システム のうち、空洞を制御する部分の概念図を示す。空洞 からのピックアップ信号は signal conditioning 部でダ ウンコンバーターやバンドパスフィルター等を使っ て処理される。処理された信号は Analog to Digital Converter (ADC) を用いてデジタル信号に変換する。 このデジタル信号から FPGA を用いて空洞電圧と 位相を安定化させるための補正値を計算する。計算 された値は Digital to Analog Converter (DAC) を使っ て再びアナログ信号に変換される。変換された信号 は signal modulation 部でミキサーやバンドパスフィ ルターを用いて Klystron への入力 RF 信号に変換さ れる。

Digital control board

Figure 4: Conceptual scheme of the cavity control in the DLLRF system.

3.2 I/Q 変換

DLLRF では ADC で読んだ空洞からのピックアッ プ信号を I/Q 変換する。I/Q 変換では RF の振幅 A と 位相 θ 、RF 周波数 w の関係を、

$$Ae^{j(wt+\theta)} = A(\cos\theta + j\sin\theta)e^{jwt} = (I+jQ)e^{jwt} \quad (2)$$

として実数部 (I) と虚数部 (Q) に分けて個別に計算 する。I/Qの計算精度や ADC でのデジタル化時に混 入するノイズは DLLRF で安定化できる RF 電圧や位 相を決めるため、IQ 変換が DLLRF の肝となる。RF 周波数が 500 MHz 付近の光源加速器では IF サンプ リング法 [7] や Non-IQ サンプリング法 [8]、アンダー サンプリング法 [7] を用いて *I*/*Q* を計算している。

IF サンプリング法では Fig. 4 の signal conditioning 部で空洞からのピックアップ信号をダウンコンバー トする。これは 500 MHz の信号を直接測定できるよ うなサンプリング周波数の高い ADC は、分解能や サンプリングジッターが悪く、高精度で I/Q を計 算するのに適さないためである。ダウンコンバート された周波数は Intermediate Frequency (IF) と呼ばれ、 ADC のサンプリング周波数 f_s の 1/4 に設定される。 すると一周期で IF を $\pi/2$ ごとに 4 回測定でき、それ ぞれの信号を V_0, V_1, V_2, V_3 とすると、

$$I = \frac{V_0 - V_2}{2}\cos\phi + \frac{V_1 - V_3}{2}\sin\phi$$
(3)

$$Q = \frac{V_0 - V_2}{2} \sin\phi - \frac{V_1 - V_3}{2} \cos\phi$$
(4)

と計算できる。ここで ϕ は *IF* と *f_s* の位相差を示す。 この方式は ALBA で (IF, *f_s*) = (20 MHz, 80 MHz) とい うパラメータで使用されている [9]。また ALBA の DLLRF システムをベースに DIAMOND や SIRIUS で も同じパラメータが採用されている [10,11]。この方 式では入力信号のオフセットがキャンセルされる、 サンプリングジッターの影響が緩和されるという利 点がある。しかし IF の奇数倍の高周波がナイキスト 周波数で折り返され、IF と分離不能になるという問 題がある。したがって IF の奇数倍のノイズが存在し た場合は計算精度が低下してしまう。またこの手法 では ADC の性能以外にダウンコンバート部の非線 形性や位相ノイズも *I/Q* 計算精度を悪化させる。

IF とノイズを分離する方法に Non-IQ サンプリン グ法がある。この手法では IF と ADC のサンプリン グクロック $f_s \in N \cdot IF = M \cdot f_s$ (N, M は互いに素な 1 より大きい整数)を満たすように設定する。すると ナイキスト周波数で折り返された高周波と IF を分離 できる。最終的にはバンドパスフィルターを用いて 必要ない周波数成分を取り除く。またこの時 I/Q は

$$I = \frac{2}{N} \sum_{i=0}^{N-1} V_i \sin(\phi + i\Delta\phi)$$
(5)

$$Q = \frac{2}{N} \sum_{i=0}^{N-1} V_i \cos(\phi + i\Delta\phi) \tag{6}$$

と計算する事ができる。ここで V_i は ADCで読んだi 番目の IF、 $\Delta \phi$ は i 番目と i + 1 番目の間の位相進 みで、

$$\Delta \phi = \frac{M}{N} 2\pi \tag{7}$$

と表される。この手法を採用して SNS で開発され た、(IF, f_s) = (50 MHz, 40 MHz) というパラメータ の DLLRF システム [12] をベースにしたシステムが、 NSLS-II、PLS-II、TPS で採用されている [13–15]。また SSRF では (IF, f_s) = (38.4 MHz, 30.72 MHz) の DLLRF システムが採用されている [16]。この手法には IF と ノイズを分離する以外にも、*I/Q*計算時に用いるサ ンプリング数を増やす事で、ADC やダウンコンバー ト部の悪影響を軽減できるという利点がある。一方 でサンプリング数を増やすと計算時間増大により制 御ループの遅延時間が大きくなり、うまく空洞の電 圧や位相を補正できなくなる。

ダウンコンバート部の悪影響に関しては、直接 ピックアップ信号を ADC で読み出す事で解決でき る。この手法をダウンサンプリング法と呼ぶ。ダウ ンサンプリング法は近年、高速かつ高精度の ADC が 開発された事によって可能となってきている。ADC のサンプリング周波数をピックアップ信号の周波数 $f_{\rm RF}$ に対して

$$f_s = \frac{f_{\rm RF}}{K + \frac{M}{N}} \tag{8}$$

と設定する(K, M, N は整数)。すると位相が測定毎に

$$\Delta\phi = \left(K + \frac{M}{N}\right)2\pi\tag{9}$$

ずれた信号を ADC で測定できる。またその信号の 周波数 *IF* は *N* · *IF* = *M* · *f*_s を満たす。このように *f*_s が決まると *I/Q* は Non-IQ サンプリング法と同様 に Eq. (5), (6) で計算される。SPring-8 ではこの方式 を用いた DLLRF への置き換えが始まっており、新 規 DLLRF では (IF, *f*_s) = (145 MHz, 363 MHz) という 値が使われている [17]。この手法はダウンコンバー トの悪影響を受けないが、*f*_s が高いためにサンプリ ングジッターによる影響が他の手法よりも大きい。 SPring-8 では独自にサンプリングジッターの小さい デジタイズシステムを開発し、アンダーサンプリン グ法を実現している。よって同様に高性能のデジタ イズシステムが実現できれば有効な手段となる。

Table 2 に RF 周波数が 500 MHz 付近の光源加速器 で使われている *I/Q* 計算法、*IF と f_s*、空洞電圧と 位相の安定性を示す。多くの施設で DLLRF システ ムの導入により、0.1% の電圧安定性、0.1°の位相安 定性を達成している。この値は KEK-PF で達成され ている安定性より 1 桁良い値であり、KEK-PF でも DLLRF の導入で安定性の改善が見込める。特に電圧 安定性に関しては今後問題となりうる高電圧リップ ルに由来する RF 変動の補正が期待できる。サンプ リング方法については Non-IQ サンプリング法を導 入している施設が多い。この手法は IF サンプリング 法よりもノイズに強いという利点があり、コスト面 や ADC の入手性を鑑みて最も有力な候補である。

4. まとめと今後の課題

KEK-PFでは放射光リングの高度化/高性能化/老朽 化対策として DLLRF の導入を検討している。DLLRF は多数の第三世代の光源加速器ですでに導入されて いる技術で、FPGA を核としたデジタル回路で構成 される。FPGA では高速な処理が可能なので、PF で 導入した場合には今後問題となりうる高電圧リップ ルに由来する RF 変動の補正が期待出来る。アナロ

PASJ2019 FRPH013

facility	method of IQ detection	IF	f_s	voltage stability	phase stability
ALBA [9]	IF sampling	20 MHz	80 MHz	0.11 %	0.35°
DIAMOND [10]	IF sampling	20 MHz	80 MHz	0.1 %	0.1°
NSLS-II [13]	Non-IQ sampling	50 MHz	40 MHz	_	_
PLS-II [14]	Non-IQ sampling	50 MHz	40 MHz	$\pm 0.1\% >$	$\pm 0.1^{\circ} >$
SIRIUS [11]	IF sampling	20 MHz	80 MHz	_	_
SPring-8 [17]	under sampling	145 MHz	363 MHz	0.037%	0.0591°
SSRF [16]	Non-IQ sampling	38.4 MHz	30.72 MHz	1%	1°
TPS [15]	Non-IQ sampling	50 MHz	40 MHz	0.06%	0.07°

Table 2: IQ Detection and the Stability of the Cavity in Various Light Sources

グ LLRF との大きな違いは空洞からピックアップした RF 信号を I/Q 変換して用いる事で、I/Q 変換の精度が安定性を決める。I/Q の計算には IF サンプリング法、Non-IQ サンプリング法、アンダーサンプリング法が用いられる。RF 周波数が 500 MHz 付近の光源加速器では Non-IQ サンプリング法が多く使われており、0.1%の RF 電圧安定性、0.1°の RF 位相安定性が達成されている。

PF においても Non-IQ サンプリング法を用いた DLLRF システムが有力な候補である。またこの手法 の特色は I/Q 計算に用いる測定点を増やすほど計算 精度が向上する一方、制御ループの遅延時間が増大 するという点である。したがって制御ループの応答 速度とノイズ削減の観点から Non-IQ サンプリング 法のパラメータの最適化が必要である。その他にも 電圧/位相制御ループの開発では過渡的なビームロー ディングの補償等、次世代光源で使われる技術を制 御する仕組みの検討が必要となる。特に既存の制御 方式に新しい方式を追加する際には制御ループの応 答速度の低下を許容できる範囲に収めなければなら ない。今後は新技術の実装を中心に、電圧/位相の制 御方式の検討を進めていく。

参考文献

- Y. Kobayashi *et al.*, "Present status of PF ring and PF-AR at KEK", Proceedings of this conference, FSPI020.
- [2] N. Nakamura, M. Tadano, T. Nogami, K. Haga, "Study of PF-ring infrastructure improvements for the PF upgrade plan", Proceedings of this conference, WEPH025.
- [3] S. Sakanaka, K. Umemori, T. Takahashi, M. Izawa, "クラ イストロン用高圧電源の更新", PF ring report 836, 2003.
- [4] J. Rose, "Storage ring RF systems Tolerances", Preliminary Design Report, Chapter 4.6, November 2007, National Synchrotron Light Source II, Brookhaven National Laboratory; https://www.bnl.gov/nsls2/project/PDR/ 1-Accel_Ch_004_Storage_Ring_System.pdf
- [5] M. Izawa, S. Sakanaka, T. Takahashi, K. Umemori, "Present status of the photon factory RF system", Proceedings of the Asian Particle Accelerator Conference (APAC) 2004, Gyeongju, Korea, Mar. 2004, pp. 389-391; http://accelconf.web.cern.ch/accelconf/a04/ PAPERS/TUP14016.PDF
- [6] S. Sakanaka et al., "Reinforcement of the High-Power RF

Source at the Photon Factory Storage Ring", KEK Report 91-7, 1991.

- [7] T. Miura, "マイクロ波ローレベル制御",高 エネルギー加速器セミナー OHO'17 (2017); http://accww2.kek.jp/oho/OHOtxt/OHO-2017/ 08_Miura_Takako_2.pdf
- [8] T. Schilcher, "RF applications in digital signal processing", Proceedings of CERN Accelerator School: Digital Signal Processing, CAS, 2007; https://core.ac.uk/ download/pdf/44195318.pdf
- [9] A. Salom and F. Perez, "Digital LLRF For ALBA storage ring", Proceedings of European Particle Accelerator Conference (EPAC) 2008, Genoa, Italy, 2008, TUPC148; https://accelconf.web.cern.ch/AccelConf/e08/ papers/tupc148.pdf
- [10] P. Gu et al., "Digital low level RF systems for DIA-MOND light source", Proceedings of the International Particle Accelerator Conference (IPAC) 17, Copenhagen, Denmark, 2017, THPAB152; http://accelconf.web.cern. ch/AccelConf/ipac2017/papers/thpab152.pdf
- [11] R. H. A. Farias, A. P. B. Lima, L. Liu, F. S. Oliveira, "Design and status of SIRIUS light source RF systems", Proceedings of the International Particle Accelerator Conference (IPAC) 18, Vancouver, BC, Canada, 2018, WEPMF011; http://accelconf.web.cern.ch/ AccelConf/ipac2018/papers/wepmf011.pdf
- [12] H. Ma *et al*, "Progress in RF controls at SNS", LLRF Workshop, Knoxville, TN, October, 2007.
- [13] H. Ma et al., "The low-level radio frequency system for the superconducting cavities of National Synchrotron Light Source II", Proceedings of the Particle Accelerator Conference (PAC) 2011, New York, USA, MOP295; https://pdfs.semanticscholar.org/ c06f/cd76243eb4614bab3163ec8d0a318cf6055b.pdf
- [14] M.H. Chun et al., "Status and progress of RF system for the PLS-II storage ring", Proceedings of the International Particle Accelerator Conference (IPAC) 12, New Orleans, USA, 2012, WEPPC023; https://accelconf.web.cern.ch/ accelconf/IPAC2012/papers/weppc023.pdf
- [15] F.Y. Chang et al., "Performance tests of a digital low-level RF-system at the TPS", Proceedings of the International Particle Accelerator Conference (IPAC) 19, Melbourne, Australia, 2019, THPTS075; https://ipac2019.vrws.de/ papers/thpts075.pdf
- [16] J. Liu et al., "RF system for SSRF storage ring",

Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan July 31 - August 3, 2019, Kyoto, Japan

PASJ2019 FRPH013

Proceedings of the Particle Accelerator Conference (PAC) 09, Vancouver, Canada, 2019, WE5PFP051; https://accelconf.web.cern.ch/accelconf/ pac2009/papers/we5pfp051.pdf

[17] T. Ohshima et al., "Upgrade of LLRF system at SPring-8 storage ring using MTCA.4 standard modules", Proceedings of the 15th Annual Meeting of Particle Accelerator Society of Japan, Nagaoka, Japan, 2018, WEOL10; https://www.pasj.jp/web_publish/pasj2018/ proceedings/PDF/WEOL/WEOL10.pdf