PASJ2019 FRPH003

RIBF におけるシステム統合のためのガスストリッパー制御の更新 UPDATE OF GAS STRIPPER CONTROL SYSTEM FOR SYSTEM INTEGRATION AT RIBF

小山亮 *^{A), B)}、内山暁仁 ^{A)}、今尾浩士 ^{A)}、渡邉環 ^{A)} Ryo Koyama^{*A), B)}, Akito Uchiyama^{A)}, Hiroshi Imao^{A)}, Tamaki Watanabe^{A)} ^{A)}RIKEN Nishina Center for Accelerator-Based Science ^{B)}SHI Accelerator Service Ltd.

Abstract

Most parts of the RIBF components are controlled by using EPICS, but NI LabVIEW is also widely used owing to its benefit that enables us to introduce a hardware interface in a short term at low cost. We have successfully upgraded the LabVIEW-based control system of the He gas striper at RIBF, by introducing CA Lab: the interface between LabVIEW and EPICS. The upgraded system works as EPICS IOC, so we can operate a client control protocol integratively.

1. はじめに

1.1 RIBF 加速器の構成

理化学研究所仁科加速器科学研究センターの Radioactive Isotope Beam Factory (RIBF) [1] は、水素からウラ ンまでの重イオンビームを加速し、世界最大強度の RI ビームを発生させ、新たな原子核モデルの構築・元素の 起源の解明といった根源的な問いに答える研究に加え、 新しい RI 技術による新産業の創出への貢献を目的とす る加速器施設である。

Figure 1 に示す通り加速器は 3 台の入射器 (AVF、 RILAC、RILAC2) と 4 台のリングサイクトロン (RRC、 fRC、IRC、SRC) で構成される [2]。更に現在、超重元素 合成実験に必要な低速度領域において大強度ビームを高 加速勾配で加速するために、RILAC の後段に λ/4 型超 伝導線形加速器 (SRILAC) [3] が建設中である。重イオ ンはこれらを適宜組み合わせて多段加速される途中で、 固体膜、あるいは気体を用いたガスストリッパーにより 荷電変換される。これにより核子当たりのエネルギーが 345 MeV/u (質量/電荷比 ≃2 の場合は 400 MeV/u) まで 加速することができる。

Figure 1: Schematic layout of RIBF at RIKEN Nishina Center for Accelerator-Based Science.

1.2 RIBF 制御系概要

電磁石電源・ビーム診断装置・真空制御機器を含む RIBF 構成装置のほとんどが Experimental Physics and Industrial Control System (EPICS) [4] を用いた分散制御 システム [5] で構築されている。EPICS では、制御対象と なるデバイスとオペレータインターフェースとなる端末 を結ぶフロントエンド計算機を Input/Output Controller (IOC) と呼び、IOC 上で EPICS のベースプログラム及び 各種コントローラ制御用に作成されたドライバプログラ ムが実行される。これらプログラムは IOC に定義され た Process Variable (PV) と呼ばれるデータ群を Channel Access (CA) プロトコルに従って読み書きすることで目 的の装置を制御している。

この一方で、いくつかのセクションにおいては制御 デバイスと PC から成る二層制御システムも混在し、 EPICS ベースなシステムとは独立に運用されている。こ れは RIBF の前身である RARF の旧システムが一部踏 襲されていることも理由の一つとして挙げられるが、大 きな理由はマンパワーや開発時間に制限があるためであ る。なぜなら EPICS では netDev [6] や stream device [7] といった、ハードウェアへのインターフェース部分であ るデバイスサポート開発のしきい値を下げるツールが提 供されてはいるが、使用したいハードウェアのデバイス サポートが提供されていなければ開発する必要があり、 それなりのコストがかかるからである。

二層制御システムのうち、RIBF においてはナショナ ルインスツルメンツ (NI) 社の LabVIEW [8] が広く使用 されている。LabVIEW ではハードウェアへのインター フェース部分は提供されているケースが多く、すでにあ るものを利用するだけで低コストに導入できるという利 点がある。また、データ読み出しに関しては EPICS と統 一的に扱う手法を開発・運用しており、異なるシステム で取得したデータ同士も統一的な参照が可能となってい る [9]。しかし、オペレータインターフェース、アーカイ バといった加速器運転に必須なシステムを統合するため には、制御プロトコルはやはり統合されているべきであ り、RIBF においては EPICS ベースなシステムとの統合 のしきい値を下げる事が大きな課題であった。これを解 決すべく今回導入したのが CA Lab [10] であり、2 項で 詳しく述べる。

^{*} rkoyama@riken.jp

PASJ2019 FRPH003

1.3 ガスストリッパー

RIBF におけるウランやキセノンといった非常に重い イオンの加速においては RRC の後段と fRC の後段の 2 箇所で荷電変換が行われ、2012 年までは炭素膜を荷電 ストリッパーとして用いて来た。しかしウランの様な非 常に重いイオンは電子束縛エネルギーが大きいため、軽 いイオンに比べて必然的に膜厚が厚くなり、ビームエ ネルギー損失は増加し、ビーム品質の劣化および膜自 身のダメージは避けられず、ビーム大強度化における課 題となっていた。これを打開すべく開発されたのが He ガスストリッパー [11] であり、RRC 後段にインストー ルされ、その制御システムに LabVIEW を用いている。 Figure 2 に He ガスストリッパーを用いる代表的なウラ ンの加速スキームを示す。

Figure 2: Schematic of 345 MeV/u ²³⁸U acceleration.

尚、キセノン加速においては fRC 後段にインストール した空気ストリッパーも併用した実績と、He ガスの代 わりに N₂ ガスをターゲットガスとして使用した実績が あるが、本稿では RRC 後段の He ガスストリッパーにつ いて述べる。

2. ガスストリッパー制御システムの更新

2.1 CA Lab の導入

RIBF における LabVIEW を用いた制御システムの一 つが He ガスストリッパーの制御システムである [12]。 このシステムは NI 社から提供されている NI EPICS Client I/O Server [13] によって CA クライアントとして の機能は持たせていたが、二層制御システムであるため 他の EPICS ベースシステムと相互にアクセスすること が難しかった。また、NI EPICS Server I/O Server を導入 すれば EPICS IOC の構築が可能ではあるものの以下の 問題点があった:

- PV を直接は扱えず、LabVIEW プロジェクトで PV を定義した上でネットワークシェア変数と1つ1つ 紐付けして使用する必要がある点、
- PV を直接扱えないが故に、端末毎にネットワーク シェア変数との紐付けが必要な点、
- プログラム上でポーリングすることでしか PV の変 化を検出できない点、
- 4) VAL 以外のフィールドを利用できない点。

これら問題点の解決と今後の拡張性を検討し、今回 He ガスストリッパーの制御システムにおける中間層として CA Lab SoftIOC を導入し、システムのアップグレード を行った。

CA Lab とは、Helmholtz-Zentrum Berlin (HZB) で開 発された LabVIEW の VI ライブラリであり、EPICS CA プロトコルに従って LabVIEW と EPICS のインター フェースとなる。CA Lab SoftIOC はネットワーク上に PV を提供し、この PV の変化を ローカルなソケット通 信として CA Lab Event VI がイベントドリブンに検知し デバイスの制御を実現している。LabVIEW には様々な 計測器ドライバが用意されているので、EPICS デバイス サポートに代わり、これらを流用することで低コスト短 期間でのシステム開発を可能にさせている。一方、本家 EPICS の手順ではランタイムデータベースとデバイスド ライバを結ぶデバイスサポートを開発せねばならない場 合が多く、システム開発にコストと時間がかかる傾向に ある、と考えている。これらの関係を Fig. 3 に示す。

Figure 3: System configuration diagram for CA Lab Soft-IOC and for native EPICS IOC.

2.2 He ガスストリッパー制御系のアップグレード

アップグレードした He ガスストリッパー制御システムにおいて使用している CA Lab SoftIOC (EPICS IOC) を Fig. 4 に、同制御システムのブロックダイアグラムを Fig. 5 に示す。

Figure 4: LabVIEW Block diagram (upper) and front panel (lower) of CA Lab SoftIOC (EPICS IOC).

Figure 5: Schematic of He gas stripper and block diagram of its control system.

アップグレードした He ガスストリッパー制御システ ムの構成は以下の通りである:

- ローカル制御:ガスストリッパーのある加速器室から約30mの距離に設置した EPICS IOC として使用している PC 上で、これと直結した各デバイスをLabVIEW を用いて制御。
- EPICS IOC 用 PC: インターフェース社の Classembly Devices [14] を採用した。CA Lab SoftIOC が走り、各デバイスの制御を PV 経由で実行。2 つあるシリアルポートにガス圧と真空ゲージコントローラーを、PCI スロットには DeviceNet 用の NI PCI-8532、USB ポートにはビームインターロック用のcDAQ を接続している。その他の仕様は Table 1 を参照。
- リモート制御:コントロール室設置のクライアント PC (Table 1 を参照) に LabVIEW と CA Lab をイン ストールし、PV 経由でガスストリッパーを制御。
 各種値をトレンドグラフ化して監視、異常時にはア ラームが発報する CA クライアントを LabVIEW-VI として作成。
- ターゲットガス圧制御:ガスストリッパーのター ゲット圧をガス制御バルブ RME 005 A とそのコン トーラー RVC 300 (両 Pfeiffer Vacuum) で制御。制 御インターフェースは RS232。
- ガスジェット制御: N₂ ガスジェットをマスフロー コントローラー FCS-T1000D (Fujikin) で制御。N₂ ガスジェットは He ガス閉じ込め能力を向上させ、 差動排気系のオリフィス系を増大させつつガルス トリッパー前後の真空を維持するとともに前段ス トリッパーとしての役割を担う [11]。制御インター

フェースは DeviceNet。CAN ブレークアウトボッ クス NI 780041-01 を介し、He ターゲットを挟んで 上流下流 2 つずつの計 4 つのマスフローコントロー ラーを制御可能だが、現状は上流側 1 つのみを使用 している。

- 真空ゲージ:各所の真空ゲージ (CDG-500/Agilent、 MG-2/Cannon Anelva)の値をゲージコントロー ラー XGS-600 (Agilent)で読み取り。制御インター フェースは RS232。
- マシンプロテクション用インターロック:排気循 環用 Mechanical Booster Pump (MBP) 温度 (PT1-3) とオリフィス温度 (OT1-4) を K 型熱電対と温度 計モジュール NI 9213 で読み取り。温度異常時は ソリッドステートリレー NI 9485 を介して加速器 のビームインターロックシステム [15] に信号を出 力。これらモジュールのシャーシは USB インター フェースの NI cDAQ 9172 を使用。
- バッフルカレント:ガスストリッパーのオリフィス 入り口にバッフルスリット (BF1-3)を設置し、そこ に当たる電流量を EPICS ベースシステムで計測し ている。LabVIEW-VI 上でこの電流値やオリフィ ス温度などを一緒にプロットすることでビームロ スの程度を把握しつつビームトランスポートのパラ メータを最適化している。
- データアーカイブ:ガス圧、各所の温度といったガスストリッパー制御に関わる全てのデータは My-DAQ2 システム [16] にアーカイブしている。My-DAQ2 は SPring-8 で開発されたデータ収集・表示システムであるが、RIBF では主に非 EPICS のデータを収集する目的で独自に機能拡張を行い、大規模に運用を行っている。しかし今回のアップグレードによってシステム統合が達成されたので、EPICS 制御系のデータアーカイブシステム [16] が利用可能となった。

Table 1: Specification of Control PCs

Local control (Classembly Devices)	
OS	Windows 10 Enterprise 2016 LSTB
CPU	Intel Core i5-4570TE @ 2.70 GHz
Memory	8.00 GB
Function	EPICS IOC (CA Lab SoftIOC)
Remote control (general purpose PC)	
OS	Windows 10 Pro
CPU	Intel Core i5-7400 @ 3.00 GHz
Memory	8.00 GB
Function	CA client
Backup (general purpose PC)	
OS	Windows 7 Pro SP1
CPU	Intel Core i3-3220 @ 3.30 GHz
Memory	8.00 GB

アップグレードに際して EPICS IOC 用 PC を汎用的 なマシンから、24 時間連続運転を想定した高耐久高信 頼のインターフェース社 Classembly Devices [14] に置

PASJ2019 FRPH003

き換えた。特徴としては、ディスクへの書込みを保護す ることで、シャットダウンコマンドを無視して電源を落 とす事が可能な点が挙げられる。また、昨今の PC とし ては珍しくシリアルポートが2ポート搭載されているこ とも大きなメリットであった (He ガスストリッパー制 御に必要十分数)。それまで使用していた汎用的なマシ ン (Table 1 内の Backup) にはシリアルポートがなかっ たため、開発当初は USB/シリアル変換アダプタを使用 していたが、概ね1ヶ月に数回は通信異常が発生して いた。その後、Ethernet/シリアルインターフェース (NI Enet-232/4) に更新したがこれも1ヶ月に1回程度の頻 度で通信異常が発生していた。

アップグレード後の本システムは 2018 年 10 月 2 日 に起動し、現在も SoftIOC を含む制御システムとしては 連続的に稼働中であり、連続約 10 ヶ月間一度もトラブル は起きていない。この期間のうち 345 MeV/u-²³⁸U 加速 に 52 日間、345 MeV/u-¹²⁴Xe 加速に 28 日間、実際にガ スストリッパーにガスを流して連続運転した。He ガス ストリッパー及びそれに続く N₂ ジェット導入は、ビー ム強度増大に大きく貢献しており、345 MeV/u-²³⁸U は 72 pnA、345 MeV/u-¹²⁴Xe は 173 pnA を達成している。

3. まとめと今後の展開

ガスストリッパーの制御システムにおける中間層とし て CA Lab SoftIOC を導入し、システムのアップグレー ドを行った。PCI バス、RS232、USB と数種類の異なる 物理層へのアクセスに対しても、LabVIEW で提供され ている計測ドライバをそのまま利用することで低コス トにシステムを構築することができた。アップグレー ドされたシステムは、LabVIEW ベースにもかかわらず EPICS IOC として振る舞うため、クライアント制御プロ トコルを統合的に扱うことができるようになった。2018 年 10 月に実運用を開始して以降、トラブルは 1 度も起 きていない。RIBF においてはガスストリッパー以外に も LabVIEW ベースの制御システムが使用されており、 これらへ CA Lab SoftIOC を導入し更なるシステム統合 を検討している。NI PXI システムを中核としたビーム エネルギー測定・フィードバックシステム [17] への導入 が第一候補である。

参考文献

- [1] Y. Yano, The RIKEN RI beam factory project: A status report, Nucl. Instrum. & Methods B261 (2007) p. 1009.
- [2] N. Tsukiori *et al.*, FSPH002, in these proceedings.
- [3] K. Yamada et al., Proc. of PASJ2017, p. 17.
- [4] EPICS; https://epics.anl.gov
- [5] M. Komiyama *et al.*, Proc. of ICALEPCS2013, San Francisco, CA, USA, p. 348.
- [6] J. Odagiri *et al.*, Proc. ICALEPCS2003, Gyeongu, Korea, P.494.
- [7] D. Zimoch, "StreamDevice2"; http://epics.web.psi.ch/software/streamdevice
- [8] LabVIEW; https://www.ni.com/ja-jp/shop/labview.html
- [9] A. Uchiyama *et al.*, Proc. of PCaPAC2016, Campinas, Brazil, p. 35.
- [10] CA Lab; https://www.helmholtz-berlin.de/zentrum/ locations/it/software/exsteuer/calab/index_ en.html
- [11] H. Imao et al., Proc. of IPAC2018, Vancouver, BC, Canada, p. 41.
- [12] R. Koyama et al., RIKEN Accel. Prog. Rep. 48, 2015, p. 192.
- [13] EPICS I/O Server; http://www.ni.com/product-documentation/ 14149/en/
- [14] Classembly Devices (Interface Corp.); http://www.interface.co.jp/catalog/prdc.asp? name=EST-EM11A(S7X)GF00NS22
- [15] M. Komiyama et al., Proc. of PASJ2 & LAM30, p. 615.
- [16] A. Uchiyama et al., Proc. of PASJ2017, p. 644.
- [17] T. Watanabe et al., Proc. of PASJ2018, p. 49.